Problem Statement

In the city of Nevermore, there are 108 streets and 108 avenues, both numbered from0 to 108−1. All streets run straight from west to east, and all avenues run straight from south to north. The distance between neighboring streets and between neighboring avenues is exactly 100 meters.

Every street intersects every avenue. Every intersection can be described by pair(x,y), where x is avenue ID and y is street ID.

There are N fountains in the city, situated at intersections (Xi,Yi). Unlike normal intersections, there's a circle with radius 10 meters centered at the intersection, and there are no road parts inside this circle.

The picture below shows an example of how a part of the city with roads and fountains may look like.

City governors don't like encountering more than one fountain while moving along the same road. Therefore, every street contains at most one fountain on it, as well as every avenue.

Citizens can move along streets, avenues and fountain perimeters. What is the shortest distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2)?

Constraints

  • 0≤x1,y1,x2,y2<108
  • 1≤N≤200,000
  • 0≤Xi,Yi<108
  • XiXj for ij
  • YiYj for ij
  • Intersections (x1,y1) and (x2,y2) are different and don't contain fountains.
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

x1 y1 x2 y2
N
X1 Y1
X2 Y2
:
XN YN

Output

Print the shortest possible distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2), in meters. Your answer will be considered correct if its absolute or relative error doesn't exceed 10−11.

Sample Input 1

1 1 6 5
3
3 2
5 3
2 4

Sample Output 1

891.415926535897938

One possible shortest path is shown on the picture below. The path starts at the blue point, finishes at the purple point and follows along the red line.

Sample Input 2

3 5 6 4
3
3 2
5 3
2 4

Sample Output 2

400.000000000000000

Sample Input 3

4 2 2 2
3
3 2
5 3
2 4

Sample Output 3

211.415926535897938
 

愚人节赛的第二题(滑稽)。
首先可以知道,每经过一个喷泉,都只可能走1/4或1/2个圆。而且走半个圆相对直走来说更长,走1/4个圆相对直走来说更短。
同时,由于只有一个询问,所以可以把考虑的范围缩到以边(S,T)为对角线的矩形中。
而且,每一小段的长度都远大于走喷泉节省的距离,且喷泉数量很有限,所以最优解中不存在绕路走喷泉的情况。
设S在矩形左下角,T在矩形右上角,易知此时最优解中经过的喷泉的x,y坐标单调上升,LIS直接刚。
需要注意的是,若矩形的每一行(列)都存在要走的喷泉,则必有一个喷泉要走整圈(否则会走出矩形)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define y1 Y1
using namespace std;
const int maxn=,inf=1e8;
const double qarc=acos(-)*5.0;
int n,cnt,x1,x2,y1,y2;
int f[maxn],g[maxn],b[maxn];
struct p{int x,y;}a[maxn];
inline int read(){
int x=,f=;char ch=getchar();
for(;ch<''||ch>'';f=ch=='-'?-:,ch=getchar());
for(;ch>=''&&ch<='';x=x*+ch-,ch=getchar());
return x*f;
}
bool cmp(p a,p b){return a.x<b.x;}
int main(){
x1=read();y1=read();x2=read();y2=read();n=read();
for(int i=;i<=n;i++)a[i].x=read(),a[i].y=read();
if(x1>x2){
x1=inf-x1;x2=inf-x2;
for(int i=;i<=n;i++)a[i].x=inf-a[i].x;
}
if(y1>y2){
y1=inf-y1;y2=inf-y2;
for(int i=;i<=n;i++)a[i].y=inf-a[i].y;
}
sort(a+,a+n+,cmp);
int tot=,ans1=;
for(int i=;i<=n;i++)
if(a[i].x>=x1&&a[i].x<=x2&&a[i].y>=y1&&a[i].y<=y2)
b[++tot]=a[i].y;
for(int i=;i<=tot;i++){
f[i]=lower_bound(g+,g+ans1+,b[i])-g;
if(f[i]>ans1)ans1=f[i],g[ans1]=b[i];
else g[f[i]]=min(g[f[i]],b[i]);
}
double ans=(double)(x2+y2-x1-y1)*100.0;
ans-=ans1*(-qarc);
if(ans1==min(y2-y1+,x2-x1+))ans+=qarc;
printf("%.15lf",ans);
return ;
}

[AtCoder 2702]Fountain Walk - LIS的更多相关文章

  1. 【agc019C】Fountain Walk

    Portal --> agc019C Description 有一个\(10^8*10^8\)的网格图,一格距离为\(100\),第\(x\)条竖线和第\(y\)条横线的交点记为\((x,y)\ ...

  2. Agc019_C Fountain Walk

    传送门 题目大意 给定网格图上起点和终点每个格子是长为$100$米的正方形,你可以沿着线走. 平面上还有若干个关键点,以每个关键点为圆心,$10$为半径画圆,表示不能进入圆内的线,但是可以从圆周上走, ...

  3. 【AtCoder】AGC019

    A - Ice Tea Store 算一下每种零售最少的钱就行,然后优先买2,零头买1 #include <bits/stdc++.h> #define fi first #define ...

  4. AtCoder Beginner Contest 085(ABCD)

    A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...

  5. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  6. AtCoder Beginner Contest 165

    比赛链接:https://atcoder.jp/contests/abc165/tasks A - We Love Golf 题意 区间 $[a, b]$ 中是否存在 $k$ 的倍数. 代码 #inc ...

  7. Lis日常维护

    1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...

  8. uva10635 LIS

    Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...

  9. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

随机推荐

  1. django QuerySet

    Django对数据库的封装1——QuerySet 发布时间:2018-02-28 来源:网络 上传者:用户 关键字: manager 数据库 记录 影响 发表文章 摘要:   Django对数据库的操 ...

  2. python epoll方式tcp连接回发消息

    # -*- coding:utf-8 -*- import socket import select class testserver(): def __init__(self): self.serv ...

  3. 记事本:一些js案例以及DOM和BOM

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. AngularJS指令基础(一)

    AngularJS指令基础(一) 1.什么是指令:粗暴的理解就是,自定义HTML标签.专业理解是指,angularJS扩展具有自定义功能的HTML元素的途径. 2.什么时候用到指令:需求是变化的.多样 ...

  5. Django 之 路由URL,视图,模板,ORM操作

    1.后台管理的左侧菜单,默认只有第一个页签下面的选项是显示的,点了别的页签再显示别的页签下面的选项,问题是:点了任何菜单的选项后,左侧菜单又成了第一个页签的选项显示,别的页签隐藏,也就是左侧的菜单刷新 ...

  6. linux下c通过虚拟地址映射读写文件的代码

    在代码过程中中,把开发过程中比较好的一些代码片段记录起来,如下的代码内容是关于 linux下c通过虚拟地址映射读写文件的代码,应该对小伙伴有些好处.#include<stdio.h>#in ...

  7. windows 上传文件到 Linux 服务器

    方法一: pscp E:\javaWP\new11111.txt username@130.75.7.156:/home/

  8. mysqldump命令使用

    1.执行mysqldump命令前,先给配制添加帐号和密码: # vi /etc/my.cnf user=root password=XXXXXX 2. # mysqldump -uroot -pXXX ...

  9. 生活日历NABCD需求分析

    这次我们团队要开发一个生活日历APP,对于这个APP的NABCD的需求分析,我对此作出其中的一小部分介绍. N(Need)需求 目前市场上有很多的日历程序,每个手机自带的功能中必然有日历程序.但是对于 ...

  10. Docker使用Dockerfile构建Asp.Net Core镜像

    FROM microsoft/dotnet:2.2-aspnetcore-runtime AS base WORKDIR /app EXPOSE 80 FROM microsoft/dotnet:2. ...