[AtCoder 2702]Fountain Walk - LIS
Problem Statement
In the city of Nevermore, there are 108 streets and 108 avenues, both numbered from0 to 108−1. All streets run straight from west to east, and all avenues run straight from south to north. The distance between neighboring streets and between neighboring avenues is exactly 100 meters.
Every street intersects every avenue. Every intersection can be described by pair(x,y), where x is avenue ID and y is street ID.
There are N fountains in the city, situated at intersections (Xi,Yi). Unlike normal intersections, there's a circle with radius 10 meters centered at the intersection, and there are no road parts inside this circle.
The picture below shows an example of how a part of the city with roads and fountains may look like.
City governors don't like encountering more than one fountain while moving along the same road. Therefore, every street contains at most one fountain on it, as well as every avenue.
Citizens can move along streets, avenues and fountain perimeters. What is the shortest distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2)?
Constraints
- 0≤x1,y1,x2,y2<108
- 1≤N≤200,000
- 0≤Xi,Yi<108
- Xi≠Xj for i≠j
- Yi≠Yj for i≠j
- Intersections (x1,y1) and (x2,y2) are different and don't contain fountains.
- All input values are integers.
Input
Input is given from Standard Input in the following format:
x1 y1 x2 y2
N
X1 Y1
X2 Y2
:
XN YN
Output
Print the shortest possible distance one needs to cover in order to get from intersection (x1,y1) to intersection (x2,y2), in meters. Your answer will be considered correct if its absolute or relative error doesn't exceed 10−11.
Sample Input 1
1 1 6 5
3
3 2
5 3
2 4
Sample Output 1
891.415926535897938
One possible shortest path is shown on the picture below. The path starts at the blue point, finishes at the purple point and follows along the red line.
Sample Input 2
3 5 6 4
3
3 2
5 3
2 4
Sample Output 2
400.000000000000000
Sample Input 3
4 2 2 2
3
3 2
5 3
2 4
Sample Output 3
211.415926535897938
愚人节赛的第二题(滑稽)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define y1 Y1
using namespace std;
const int maxn=,inf=1e8;
const double qarc=acos(-)*5.0;
int n,cnt,x1,x2,y1,y2;
int f[maxn],g[maxn],b[maxn];
struct p{int x,y;}a[maxn];
inline int read(){
int x=,f=;char ch=getchar();
for(;ch<''||ch>'';f=ch=='-'?-:,ch=getchar());
for(;ch>=''&&ch<='';x=x*+ch-,ch=getchar());
return x*f;
}
bool cmp(p a,p b){return a.x<b.x;}
int main(){
x1=read();y1=read();x2=read();y2=read();n=read();
for(int i=;i<=n;i++)a[i].x=read(),a[i].y=read();
if(x1>x2){
x1=inf-x1;x2=inf-x2;
for(int i=;i<=n;i++)a[i].x=inf-a[i].x;
}
if(y1>y2){
y1=inf-y1;y2=inf-y2;
for(int i=;i<=n;i++)a[i].y=inf-a[i].y;
}
sort(a+,a+n+,cmp);
int tot=,ans1=;
for(int i=;i<=n;i++)
if(a[i].x>=x1&&a[i].x<=x2&&a[i].y>=y1&&a[i].y<=y2)
b[++tot]=a[i].y;
for(int i=;i<=tot;i++){
f[i]=lower_bound(g+,g+ans1+,b[i])-g;
if(f[i]>ans1)ans1=f[i],g[ans1]=b[i];
else g[f[i]]=min(g[f[i]],b[i]);
}
double ans=(double)(x2+y2-x1-y1)*100.0;
ans-=ans1*(-qarc);
if(ans1==min(y2-y1+,x2-x1+))ans+=qarc;
printf("%.15lf",ans);
return ;
}
[AtCoder 2702]Fountain Walk - LIS的更多相关文章
- 【agc019C】Fountain Walk
Portal --> agc019C Description 有一个\(10^8*10^8\)的网格图,一格距离为\(100\),第\(x\)条竖线和第\(y\)条横线的交点记为\((x,y)\ ...
- Agc019_C Fountain Walk
传送门 题目大意 给定网格图上起点和终点每个格子是长为$100$米的正方形,你可以沿着线走. 平面上还有若干个关键点,以每个关键点为圆心,$10$为半径画圆,表示不能进入圆内的线,但是可以从圆周上走, ...
- 【AtCoder】AGC019
A - Ice Tea Store 算一下每种零售最少的钱就行,然后优先买2,零头买1 #include <bits/stdc++.h> #define fi first #define ...
- AtCoder Beginner Contest 085(ABCD)
A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
- AtCoder Beginner Contest 165
比赛链接:https://atcoder.jp/contests/abc165/tasks A - We Love Golf 题意 区间 $[a, b]$ 中是否存在 $k$ 的倍数. 代码 #inc ...
- Lis日常维护
1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...
- uva10635 LIS
Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...
- python os.walk()
os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...
随机推荐
- 【Linux】常见基础命令之文件操作
vi:编辑文件 lilip@ubuntu:~/test/page$ vi test.txt i 切换到输入模式,以输入字符. x 删除当前光标所在处的字符. : ...
- Bootstrap-datepicker3官方文档中文翻译---Options/选项(原文链接 http://bootstrap-datepicker.readthedocs.io/en/latest/index.html)
Options/选项 带“Date”的所有选项都可以处理 Date 对象; 字符串格式化根据 给定的 format 而定; 相对于今天的时间变量, 如 “-1d”, “+6m +1y”等等, 其中有效 ...
- RPA 介绍
一 术语表 机器人流程自动化(RPA):在数字系统中模拟和集成人类行为以优化业务流程的软件机器人.RPA自动化捕获数据.运行应用程序.触发响应并与其他系统通信以执行各种任务. RPA路线图(RPA r ...
- Long Long Ago 二分查找
L: Long Long Ago 时间限制: 1 s 内存限制: 128 MB 提交 我的状态 题目描述 今天SHIELD捕获到一段从敌方基地发出的信息里面包含一串被经过某种算法加密过的的序 ...
- java 的 try parse
Integer myInt = Ints.tryParse(a); if (myInt != null) { result.add(Long.parseLong(a)); }
- ansible小技巧
出现带'u'的 unicode编码, 在python里 .encode()回去,尤其是经过shell处理的,最好在shell中使用jinja2来处理一下 最好这种情况在shell模块使用jinja2的 ...
- C#处理JavaScript引擎
概述 通常JavaScript在Web浏览器执行展现特定效果,C#也可以后台执行JavaScript里面方法:C#通常调用第三方DLL方式:MsieJavaScriptEngine或者JavaScri ...
- gitlab搭建,结合pycharm和vs2015配置用于开发python和c++
利用Ubuntu16.04服务器搭建gitlab仓库,本地windows系统使用pycharm和VS开发,通过软件配置可进行代码管理. 1.gitlab安装 ①安装依赖包: sudo apt-get ...
- Python学习(四十二)—— Djago-model进阶
一.QuerySet 可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. Entry.objects.all()[:5] # (LIMI ...
- C++结构体与Delphi结构体相互传参,结构体中包含结构体的嵌套,数组指针
//结构体的声明 typedef struct Mwinddirectbaseline { char* p; int s; int i; }Mwinddirectbaseline; typedef s ...