stm32位操作详解
stm32位操作详解
STM32位操作原理
思想:把一个比特分成32位,每位都分配一个地址,这样就有32个地址,通过地址直接访问。



位操作基础
位运算
位运算的运算分量只能是整型或字符型数据,位运算把运算对象看作是由二进位组成的位串信息,按位完成指定的运算,得到位串信息的结果。
位运算
&(按位与)、|(按位或)、^(按位异或)、~ (按位取反)。
其中,按位取反运算符是单目运算符,其余均为双目运算符。
位运算符的优先级从高到低,依次为~、&、^、|,
其中~的结合方向自右至左,且优先级高于算术运算符,其余运算符的结合方向都是自左至右,且优先级低于关系运算符。
()按位与运算符(&)
按位与运算将两个运算分量的对应位按位遵照以下规则进行计算:
& = , & = , & = , & = 。
即同为 的位,结果为 ,否则结果为 。
例如,设3的内部表示为 5的内部表示为 则3&5的结果为 按位与运算有两种典型用法,一是取一个位串信息的某几位,如以下代码截取x的最低7位:x & 。二是让某变量保留某几位,其余位置0,如以下代码让x只保留最低6位:x = x & 。以上用法都先要设计好一个常数,该常数只有需要的位是1,不需要的位是0。用它与指定的位串信息按位与。
()按位或运算符(|)
按位或运算将两个运算分量的对应位按位遵照以下规则进行计算:
| = , | = , | = , | =
即只要有1个是1的位,结果为1,否则为0。
例如, | 结果为037。
按位或运算的典型用法是将一个位串信息的某几位置成1。如将要获得最右4为1,其他位与变量j的其他位相同,可用逻辑或运算017|j。若要把这结果赋给变量j,可写成:
j = |j
()按位异或运算符(^)
按位异或运算将两个运算分量的对应位按位遵照以下规则进行计算:
^ = , ^ = , ^ = , ^ =
即相应位的值相同的,结果为 ,不相同的结果为 。
例如,^035结果为026。
异或运算的意思是求两个运算分量相应位值是否相异,相异的为1,相同的为0。按位异或运算的典型用法是求一个位串信息的某几位信息的反。如欲求整型变量j的最右4位信息的反,用逻辑异或运算017^j,就能求得j最右4位的信息的反,即原来为1的位,结果是0,原来为0的位,结果是1。
()按位取反运算符(~)
按位取反运算是单目运算,用来求一个位串信息按位的反,即哪些为0的位,结果是1,而哪些为1的位,结果是0。例如, ~7的结果为0xfff8。
取反运算常用来生成与系统实现无关的常数。如要将变量x最低6位置成0,其余位不变,可用代码x = x & ~077实现。以上代码与整数x用2个字节还是用4个字节实现无关。
当两个长度不同的数据进行位运算时(例如long型数据与int型数据),将两个运算分量的右端对齐进行位运算。如果短的数为正数,高位用0补满;如果短的数为负数,高位用1补满。如果短的为无符号整数,则高位总是用0补满。
位运算用来对位串信息进行运算,得到位串信息结果。如以下代码能取下整型变量k的位串信息的最右边为1的信息位:((k-)^k) & k。
移位运算
移位运算用来将整型或字符型数据作为二进位信息串作整体移动。有两个运算符:
<< (左移) 和 >> (右移)
移位运算是双目运算,有两个运算分量,左分量为移位数据对象,右分量的值为移位位数。移位运算将左运算分量视作由二进位组成的位串信息,对其作向左或向右移位,得到新的位串信息。
移位运算符的优先级低于算术运算符,高于关系运算符,它们的结合方向是自左至右。
()左移运算符(<<)
左移运算将一个位串信息向左移指定的位,右端空出的位用0补充。例如014<<,结果为060,即48。
左移时,空出的右端用0补充,左端移出的位的信息就被丢弃。在二进制数运算中,在信息没有因移动而丢失的情况下,每左移1位相当于乘2。如4 << ,结果为16。
()右移运算符(>>)
右移运算将一个位串信息向右移指定的位,右端移出的位的信息被丢弃。例如12>>,结果为3。与左移相反,对于小整数,每右移1位,相当于除以2。在右移时,需要注意符号位问题。对无符号数据,右移时,左端空出的位用0补充。对于带符号的数据,如果移位前符号位为0(正数),则左端也是用0补充;如果移位前符号位为1(负数),则左端用0或用1补充,取决于计算机系统。对于负数右移,称用0 补充的系统为“逻辑右移”,用1补充的系统为“算术右移”。以下代码能说明读者上机的系统所采用的右移方法:
printf("%d\n\n\n", ->>);
若输出结果为-,是采用算术右移;输出结果为一个大整数,则为逻辑右移。
移位运算与位运算结合能实现许多与位串运算有关的复杂计算。设变量的位自右至左顺序编号,自0位至15位,有关指定位的表达式是不超过15的正整数。以下各代码分别有它们右边注释所示的意义:
~(~ << n)
(x >> ( p-n)) & ~(~ << n)
new |= ((old >> row) & ) << ( – k)
s &= ~( << j)
for(j = ; (( << j) & s) == ; j ) ;
STM32地址映射关系及使用
地址映射关系
每个比特分成32个位,对应32个地址,之间映射关系,要不然我们怎么知道访问哪个地址,当然有公式可以计算出来,但是stm32已经帮我们封装好了映射关系,我们可以直接使用。
映射关系定义在sys.h文件下。
#ifndef __SYS_H
#define __SYS_H
#include "stm32f10x.h" //0,不支持ucos
//1,支持ucos
#define SYSTEM_SUPPORT_OS 0 //定义系统文件夹是否支持UCOS //位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
//IO口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C
#define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C
#define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C
#define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C
#define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C
#define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C
#define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08
#define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008
#define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408
#define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808
#define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08
#define GPIOG_IDR_Addr (GPIOG_BASE+8) //0x40011E08 //IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入 #define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入 #define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入 //以下为汇编函数
void WFI_SET(void); //执行WFI指令
void INTX_DISABLE(void);//关闭所有中断
void INTX_ENABLE(void); //开启所有中断
void MSR_MSP(u32 addr); //设置堆栈地址 #endif
使用
1.定义
这里我们以LED0与LED1为例。
LED0的io口为PB5
LED的io口为PE5
我们需要设置IO口输出。选择对应GPIO组,然后传入引脚号。
PBout(5)
PEout(5)
#define LED0 PBout(5)// PB5
#define LED1 PEout(5)// PE5
2.使用
LED0=1;
LED1=0;
stm32位操作详解的更多相关文章
- STM32—ADC详解
文章目录 一.ADC简介 二.ADC功能框图讲解 1.电压输入范围 2.输入通道 3.转换顺序 4.触发源 5.转换时间 6.数据寄存器 7.中断 8.电压转换 三.初始化结构体 四.单通道电压采集 ...
- STM32—SPI详解
目录 一.什么是SPI 二.SPI协议 物理层 协议层 1.通讯时序图 2.起始和停止信号 3.数据有效性 4.通讯模式 三.STM32中的SPI 简介 功能框图 1.通讯引脚 2.时钟控制逻辑 3. ...
- STM32—中断详解(配合按键中断代码,代码亲测)
在STM32中执行中断主要分三部分: 1.配置NVIC_Config()函数 2.配置EXTI_Config()函数 3.编写中断服务函数 (注:本文章所用代码为中断按键代码,实现了按键进入中断从而控 ...
- <转>C++位运算详解
原文转自:http://www.crazycpp.com/?p=82 前言 以前收藏过一篇讲C++位操作的文章,这次博客搬家,以前的数据都没有保留,整理谷歌网站管理后台的时候,发现不时的还有网友有在查 ...
- 基于STM32的uCOS-II移植详解
百度:基于STM32的uCOS-II移植详解 源:基于STM32的uCOS-II移植详解
- STM32固件库详解
STM32固件库详解 emouse原创文章,转载请注明出处http://www.cnblogs.com/emouse/ 应部分网友要求,最新加入固件库以及开发环境使用入门视频教程,同时提供例程模板 ...
- STM32开发 -- 4G模块开发详解(转)
STM32开发 -- 4G模块开发详解(1) STM32开发 -- 4G模块开发详解(2) STM32开发 -- 4G模块开发详解(3) STM32开发 -- 4G模块开发详解(4)
- STM32 GPIO 配置之ODR, BSRR, BRR 详解
STM32 GPIO 配置之ODR, BSRR, BRR 详解 用stm32 的配置GPIO 来控制LED 显示状态,可用ODR,BSRR,BRR 直接来控制引脚输出状态. ODR寄存器可读可写:既能 ...
- LWIP network interface 即 LWIP 的 硬件 数据 接口 移植 首先 详解 STM32 以太网数据 到达 的第一站: ETH DMA 中断函数
要 运行 LWIP 不光 要实现 OS 的 一些 接口 ,还要 有 硬件 数据 接口 移植 ,即 网线上 来的 数据 怎么个形式 传递给 LWIP ,去解析 做出相应的 应答 ,2017 ...
随机推荐
- Django 视图系统
Django 视图系统 概念 一个视图函数,简称视图,是一个简单的Python函数,用于接受Web请求并返回Web响应. 通常将视图函数写在project或app目录中的名为views.py文件中 简 ...
- 七牛Qshell 常用命令打印
下载 该工具使用Go语言编写而成,当然为了方便不熟悉Go或者急于使用工具来解决问题的开发者,我们提供了预先编译好的各主流操作系统平台的二进制文件供大家下载使用,由于平台的多样性,我们把这些二进制打包放 ...
- Gym - 101350F Monkeying Around(线段树+树状数组)
When the monkey professor leaves his class for a short time, all the monkeys go bananas. N monkeys a ...
- TOMCAT ---> servlet概念
1 TOMCAT ---> servlet概念 2 TOMCAT 目录结构 (各个文件夹都存放什么东西) 3 TOMCAT 程序的层级 web | |---- js,jsp,html,css ( ...
- Python并发编程之同步\异步and阻塞\非阻塞
一.什么是进程 进程: 正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 进程和程序的区别: 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程. 需要强调的是:同一个程序执行两次,那也 ...
- Neo4j 第一篇:在Windows环境中安装Neo4j
图形数据库(Graph Database)是NoSQL数据库家族中特殊的存在,用于存储丰富的关系数据,Neo4j 是目前最流行的图形数据库,支持完整的事务,在属性图中,图是由顶点(Vertex),边( ...
- mui选择器的坑
mui框架最近比较火,因为在移动端的页面展示效果太好了,web页面相当于APP的效果.连二年级的小明同学都知道了..你别说你不知道哦 但是这毕竟是一个不成熟的框架,维护和解决方案都跟不上,因此新手入坑 ...
- HDU 5963(游戏 博弈+规律)
题意是: 一群男生和一群女生玩游戏:给出一棵 n 个节点的树,这棵树的每条边有一个权值 0 或 1. 在一局游戏开始时,确定一个节点作为根.从女生开始,双方轮流进行操作. 当一方操作时,要先选择一个不 ...
- Django - 模式、简单使用
著名的MVC模式:所谓MVC就是把web应用分为模型(M),控制器(C),视图(V)三层:他们之间以一种插件似的,松耦合的方式连接在一起. 模型负责业务对象与数据库的对象(ORM) 视图负责与用户的交 ...
- * CSS 视觉格式化(基本框、包含块、盒模型、水平格式化、垂直格式化、行布局、em框、内容区、行间距、行内框、行框)
前言 CSS视觉格式化这个词可能比较陌生,但说起盒模型可能就恍然大悟了.实际上,盒模型只是CSS视觉格式化的一部分.视觉格式化分为块级和行内两种处理方式.理解视觉格式化,可以确定得到的效果是应该显示的 ...