看起来很麻烦,做起来并不难的题

以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$

显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案。

解决反射问题是这个问题的关键

我们显然可以认为一束光透过之后,可以等其他的光一起
**透过干净** 再往后走。

这样就存在Dp的阶段了。

网上很多从“前i个整体透光率”“整体反光率”什么的,或者枚举反射次数,还要等比数列求和。其实不用这么麻烦。

设$f[i][1]$表示,一单位的光从玻璃i左边射过来,**最终透过的比率**

$f[i][2]$表示,一单位的光从玻璃i右边设过来,**最终反射回来的比率**

(最终就是经过相当长的一段时间后累计的总和。)

递推式很显然了,只要枚举“回收”光线的情况

$f[i][1]=a_i+b_i\times f[i-1][2] \times f[i][1]$

移项,除过去,可以得到:

$f[i][1]=\frac{a_i}{1-b_i\times f[i-1][2]}$

以及:

$f[i][2]=b_i+a_i\times f[i-1][2] \times f[i][1]$

发现存在边界:$f[1][1]=a_1,f[1][2]=b_1$

然后递推。

最后求$\Pi f[i][1]$即可得到答案

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=5e5+;
const int mod=1e9+;
int n;
int iv;
int a[N],b[N];
int ad(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
int f[N][];
int main(){
iv=qm(,mod-);
rd(n);
for(reg i=;i<=n;++i){
rd(a[i]);rd(b[i]);
a[i]=(ll)a[i]*iv%mod;
b[i]=(ll)b[i]*iv%mod;
}
f[][]=a[];
f[][]=b[];
for(reg i=;i<=n;++i){
f[i][]=(ll)a[i]*qm(ad(,mod-(ll)b[i]*f[i-][]%mod),mod-)%mod;
f[i][]=ad(b[i],(ll)a[i]*f[i-][]%mod*f[i][]%mod);
}
int ans=;
for(reg i=;i<=n;++i){
ans=(ll)ans*f[i][]%mod;
}
cout<<ans;
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

[BJOI2019] 光线的更多相关文章

  1. [BJOI2019]光线(递推)

    [BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...

  2. [BJOI2019]光线——递推

    题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...

  3. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  4. luogu P5323 [BJOI2019]光线

    传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...

  5. 题解-BJOI2019 光线

    Problem loj3093 & x谷 题意概要:给定 \(n\) 块玻璃,每块玻璃有其折射比例与反射比例(折射比例+反射比例 不一定为 \(100\%\)),求从最上头打下一束光,有多少比 ...

  6. [BJOI2019]光线(DP)

    降智了…… 当你走头无路的时候就应该知道瞎搞一个DP: $p[i]$ 表示光射入第 $1$ 块玻璃时,从第 $i$ 块玻璃出去的光量. $q[i]$ 表示光射入第 $i$ 块玻璃时,从第 $i$ 块玻 ...

  7. [洛谷P5323][BJOI2019]光线

    题目大意:有$n$层玻璃,每层玻璃会让$a\%$的光通过,并把$b\%$的光反射.有一束光从左向右射过,问多少的光可以透过这$n$层玻璃 题解:事实上会发现,可以把连续的几层玻璃合成一层玻璃,但是要注 ...

  8. BJOI2019 题解

    BJOI2019 题解 在更了在更了 P5319 [BJOI2019]奥术神杖 对\(V_i\)求个\(\ln\)变成了让平均数最大,显然套分数规划,然后ac自动机上面dp #include<b ...

  9. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

随机推荐

  1. AlwaysOn配置时在连接步骤时报错(35250)

    1.错误描述 1XX.XXX.XXX.241(主节点) 1XX.XXX.XXX.242(从节点) 添加节点需要在主节点上执行的,错误代码:35250 报错截图 2.网上相关介绍都是怀疑端口5022的问 ...

  2. SQLServer之存储过程简介

    存储过程定义 存储的过程 (存储过程(数据库引擎)) 是存储在数据库中的可执行对象. 存储过程分类 系统存储过程   系统存储过程是 SQL Server系统自身提供的存储过程,可以作为命令执行各种操 ...

  3. AngularJS学习之旅—AngularJS Scope作用域(五)

    1.AngularJS Scope(作用域) Scope(作用域) 是应用在 HTML (视图) 和 JavaScript (控制器)之间的纽带. Scope 是一个对象,有可用的方法和属性. Sco ...

  4. Cs231n课堂内容记录-Lecture 7 神经网络训练2

    Lecture 7  Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...

  5. 基于 PHP 的数据爬取(QueryList)

    基于PHP的数据爬取 官方网站站点 简单. 灵活.强大的PHP采集工具,让采集更简单一点. 简介: QueryList使用jQuery选择器来做采集,让你告别复杂的正则表达式:QueryList具有j ...

  6. Mac系统编译FFmpeg

    转载请标明来源:我不是掌柜的博客 前言 维基百科解释:FFmpeg是一个开源软件,可以运行音频和视频多种格式的录影.转换.流功能,包含了libavcodec – 这是一个用于多个项目中音频和视频的解码 ...

  7. echarts柱状图点击阴影部分触发事件

    在很多时候我们的柱状图分布不均匀,有些柱高可能会很小,如果通过myChart.on('click',function(){})来促发事件,可能在点击的时候不好操作,因为这个click事件是绑定在各个s ...

  8. Flink 的Window 操作(基于flink 1.3描述)

    Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何 ...

  9. nginx日志切割(logrotate或shell脚本)

    nginx自己不会对日志文件进行切割,可以通过两种不同的方式进行,分别是:通过logrotate和通过shell脚本. 如果是yum方式安装的nginx,系统默认会自动通过logrotate这个日志管 ...

  10. springboot + mybatis +pageHelper分页排序

    今天下午写查出来的数据的排序,原来的数据没有排序,现在把排序功能加上...原来用的,是xml中的sql动态传参 ,,1个小数没有弄出来,果断放弃... 网上百度一下,发现用pageHelper  可以 ...