《Python for Data Analysis》一书由Wes Mckinney所著,中文译名是《利用Python进行数据分析》。这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的。

第四个实例:USDA Food Database

简介:美国农业部(USDA)制作了一份有关食物营养信息的数据

数据下载地址: https://github.com/wesm/pydata-book/tree/2nd-edition/datasets/usda_food

准备工作:导入pandas和matplotlib,因为需要读取JSON格式的文件,因此这里还需要导入json模块

import pandas as pd
import json
import matplotlib.pyplot as plt
fig,ax=plt.subplots()

使用json模块打开database.json文件:

with open (r"C:\Users\ccav\Downloads\database.json") as f:
data=json.load(f)

文件第一项就含有这么多内容:

[{'id': 1008, 'description': 'Cheese, caraway', 'tags': [], 'manufacturer': '', 'group': 'Dairy and Egg Products', 'portions': [{'amount': 1, 'unit': 'oz', 'grams': 28.35}], 'nutrients': [{'value': 25.18, 'units': 'g', 'description': 'Protein', 'group': 'Composition'}, {'value': 29.2, 'units': 'g', 'description': 'Total lipid (fat)', 'group': 'Composition'}, {'value': 3.06, 'units': 'g', 'description': 'Carbohydrate, by difference', 'group': 'Composition'}, {'value': 3.28, 'units': 'g', 'description': 'Ash', 'group': 'Other'}, {'value': 376.0, 'units': 'kcal', 'description': 'Energy', 'group': 'Energy'}, {'value': 39.28, 'units': 'g', 'description': 'Water', 'group': 'Composition'}, {'value': 1573.0, 'units': 'kJ', 'description': 'Energy', 'group': 'Energy'}, {'value': 0.0, 'units': 'g', 'description': 'Fiber, total dietary', 'group': 'Composition'}, {'value': 673.0, 'units': 'mg', 'description': 'Calcium, Ca', 'group': 'Elements'}, {'value': 0.64, 'units': 'mg', 'description': 'Iron, Fe', 'group': 'Elements'}, {'value': 22.0, 'units': 'mg', 'description': 'Magnesium, Mg', 'group': 'Elements'}, {'value': 490.0, 'units': 'mg', 'description': 'Phosphorus, P', 'group': 'Elements'}, {'value': 93.0, 'units': 'mg', 'description': 'Potassium, K', 'group': 'Elements'}, {'value': 690.0, 'units': 'mg', 'description': 'Sodium, Na', 'group': 'Elements'}, {'value': 2.94, 'units': 'mg', 'description': 'Zinc, Zn', 'group': 'Elements'}, {'value': 0.024, 'units': 'mg', 'description': 'Copper, Cu', 'group': 'Elements'}, {'value': 0.021, 'units': 'mg', 'description': 'Manganese, Mn', 'group': 'Elements'}, {'value': 14.5, 'units': 'mcg', 'description': 'Selenium, Se', 'group': 'Elements'}, {'value': 1054.0, 'units': 'IU', 'description': 'Vitamin A, IU', 'group': 'Vitamins'}, {'value': 262.0, 'units': 'mcg', 'description': 'Retinol', 'group': 'Vitamins'}, {'value': 271.0, 'units': 'mcg_RAE', 'description': 'Vitamin A, RAE', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mg', 'description': 'Vitamin C, total ascorbic acid', 'group': 'Vitamins'}, {'value': 0.031, 'units': 'mg', 'description': 'Thiamin', 'group': 'Vitamins'}, {'value': 0.45, 'units': 'mg', 'description': 'Riboflavin', 'group': 'Vitamins'}, {'value': 0.18, 'units': 'mg', 'description': 'Niacin', 'group': 'Vitamins'}, {'value': 0.19, 'units': 'mg', 'description': 'Pantothenic acid', 'group': 'Vitamins'}, {'value': 0.074, 'units': 'mg', 'description': 'Vitamin B-6', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, total', 'group': 'Vitamins'}, {'value': 0.27, 'units': 'mcg', 'description': 'Vitamin B-12', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mcg', 'description': 'Folic acid', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, food', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg_DFE', 'description': 'Folate, DFE', 'group': 'Vitamins'}, {'value': 93.0, 'units': 'mg', 'description': 'Cholesterol', 'group': 'Other'}, {'value': 18.584, 'units': 'g', 'description': 'Fatty acids, total saturated', 'group': 'Other'}, {'value': 8.275, 'units': 'g', 'description': 'Fatty acids, total monounsaturated', 'group': 'Other'}, {'value': 0.83, 'units': 'g', 'description': 'Fatty acids, total polyunsaturated', 'group': 'Other'}, {'value': 0.324, 'units': 'g', 'description': 'Tryptophan', 'group': 'Amino Acids'}, {'value': 0.896, 'units': 'g', 'description': 'Threonine', 'group': 'Amino Acids'}, {'value': 1.563, 'units': 'g', 'description': 'Isoleucine', 'group': 'Amino Acids'}, {'value': 2.412, 'units': 'g', 'description': 'Leucine', 'group': 'Amino Acids'}, {'value': 2.095, 'units': 'g', 'description': 'Lysine', 'group': 'Amino Acids'}, {'value': 0.659, 'units': 'g', 'description': 'Methionine', 'group': 'Amino Acids'}, {'value': 0.126, 'units': 'g', 'description': 'Cystine', 'group': 'Amino Acids'}, {'value': 1.326, 'units': 'g', 'description': 'Phenylalanine', 'group': 'Amino Acids'}, {'value': 1.216, 'units': 'g', 'description': 'Tyrosine', 'group': 'Amino Acids'}, {'value': 1.682, 'units': 'g', 'description': 'Valine', 'group': 'Amino Acids'}, {'value': 0.952, 'units': 'g', 'description': 'Arginine', 'group': 'Amino Acids'}, {'value': 0.884, 'units': 'g', 'description': 'Histidine', 'group': 'Amino Acids'}, {'value': 0.711, 'units': 'g', 'description': 'Alanine', 'group': 'Amino Acids'}, {'value': 1.618, 'units': 'g', 'description': 'Aspartic acid', 'group': 'Amino Acids'}, {'value': 6.16, 'units': 'g', 'description': 'Glutamic acid', 'group': 'Amino Acids'}, {'value': 0.439, 'units': 'g', 'description': 'Glycine', 'group': 'Amino Acids'}, {'value': 2.838, 'units': 'g', 'description': 'Proline', 'group': 'Amino Acids'}, {'value': 1.472, 'units': 'g', 'description': 'Serine', 'group': 'Amino Acids'}, {'value': 25.18, 'units': 'g', 'description': 'Protein', 'group': 'Composition'}, {'value': 29.2, 'units': 'g', 'description': 'Total lipid (fat)', 'group': 'Composition'}, {'value': 3.06, 'units': 'g', 'description': 'Carbohydrate, by difference', 'group': 'Composition'}, {'value': 3.28, 'units': 'g', 'description': 'Ash', 'group': 'Other'}, {'value': 376.0, 'units': 'kcal', 'description': 'Energy', 'group': 'Energy'}, {'value': 39.28, 'units': 'g', 'description': 'Water', 'group': 'Composition'}, {'value': 1573.0, 'units': 'kJ', 'description': 'Energy', 'group': 'Energy'}, {'value': 0.0, 'units': 'g', 'description': 'Fiber, total dietary', 'group': 'Composition'}, {'value': 673.0, 'units': 'mg', 'description': 'Calcium, Ca', 'group': 'Elements'}, {'value': 0.64, 'units': 'mg', 'description': 'Iron, Fe', 'group': 'Elements'}, {'value': 22.0, 'units': 'mg', 'description': 'Magnesium, Mg', 'group': 'Elements'}, {'value': 490.0, 'units': 'mg', 'description': 'Phosphorus, P', 'group': 'Elements'}, {'value': 93.0, 'units': 'mg', 'description': 'Potassium, K', 'group': 'Elements'}, {'value': 690.0, 'units': 'mg', 'description': 'Sodium, Na', 'group': 'Elements'}, {'value': 2.94, 'units': 'mg', 'description': 'Zinc, Zn', 'group': 'Elements'}, {'value': 0.024, 'units': 'mg', 'description': 'Copper, Cu', 'group': 'Elements'}, {'value': 0.021, 'units': 'mg', 'description': 'Manganese, Mn', 'group': 'Elements'}, {'value': 14.5, 'units': 'mcg', 'description': 'Selenium, Se', 'group': 'Elements'}, {'value': 1054.0, 'units': 'IU', 'description': 'Vitamin A, IU', 'group': 'Vitamins'}, {'value': 262.0, 'units': 'mcg', 'description': 'Retinol', 'group': 'Vitamins'}, {'value': 271.0, 'units': 'mcg_RAE', 'description': 'Vitamin A, RAE', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mg', 'description': 'Vitamin C, total ascorbic acid', 'group': 'Vitamins'}, {'value': 0.031, 'units': 'mg', 'description': 'Thiamin', 'group': 'Vitamins'}, {'value': 0.45, 'units': 'mg', 'description': 'Riboflavin', 'group': 'Vitamins'}, {'value': 0.18, 'units': 'mg', 'description': 'Niacin', 'group': 'Vitamins'}, {'value': 0.19, 'units': 'mg', 'description': 'Pantothenic acid', 'group': 'Vitamins'}, {'value': 0.074, 'units': 'mg', 'description': 'Vitamin B-6', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, total', 'group': 'Vitamins'}, {'value': 0.27, 'units': 'mcg', 'description': 'Vitamin B-12', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mcg', 'description': 'Folic acid', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, food', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg_DFE', 'description': 'Folate, DFE', 'group': 'Vitamins'}, {'value': 0.324, 'units': 'g', 'description': 'Tryptophan', 'group': 'Amino Acids'}, {'value': 0.896, 'units': 'g', 'description': 'Threonine', 'group': 'Amino Acids'}, {'value': 1.563, 'units': 'g', 'description': 'Isoleucine', 'group': 'Amino Acids'}, {'value': 2.412, 'units': 'g', 'description': 'Leucine', 'group': 'Amino Acids'}, {'value': 2.095, 'units': 'g', 'description': 'Lysine', 'group': 'Amino Acids'}, {'value': 0.659, 'units': 'g', 'description': 'Methionine', 'group': 'Amino Acids'}, {'value': 0.126, 'units': 'g', 'description': 'Cystine', 'group': 'Amino Acids'}, {'value': 1.326, 'units': 'g', 'description': 'Phenylalanine', 'group': 'Amino Acids'}, {'value': 1.216, 'units': 'g', 'description': 'Tyrosine', 'group': 'Amino Acids'}, {'value': 1.682, 'units': 'g', 'description': 'Valine', 'group': 'Amino Acids'}, {'value': 0.952, 'units': 'g', 'description': 'Arginine', 'group': 'Amino Acids'}, {'value': 0.884, 'units': 'g', 'description': 'Histidine', 'group': 'Amino Acids'}, {'value': 0.711, 'units': 'g', 'description': 'Alanine', 'group': 'Amino Acids'}, {'value': 1.618, 'units': 'g', 'description': 'Aspartic acid', 'group': 'Amino Acids'}, {'value': 6.16, 'units': 'g', 'description': 'Glutamic acid', 'group': 'Amino Acids'}, {'value': 0.439, 'units': 'g', 'description': 'Glycine', 'group': 'Amino Acids'}, {'value': 2.838, 'units': 'g', 'description': 'Proline', 'group': 'Amino Acids'}, {'value': 1.472, 'units': 'g', 'description': 'Serine', 'group': 'Amino Acids'}, {'value': 93.0, 'units': 'mg', 'description': 'Cholesterol', 'group': 'Other'}, {'value': 18.584, 'units': 'g', 'description': 'Fatty acids, total saturated', 'group': 'Other'}, {'value': 8.275, 'units': 'g', 'description': 'Fatty acids, total monounsaturated', 'group': 'Other'}, {'value': 0.83, 'units': 'g', 'description': 'Fatty acids, total polyunsaturated', 'group': 'Other'}, {'value': 25.18, 'units': 'g', 'description': 'Protein', 'group': 'Composition'}, {'value': 29.2, 'units': 'g', 'description': 'Total lipid (fat)', 'group': 'Composition'}, {'value': 3.06, 'units': 'g', 'description': 'Carbohydrate, by difference', 'group': 'Composition'}, {'value': 3.28, 'units': 'g', 'description': 'Ash', 'group': 'Other'}, {'value': 376.0, 'units': 'kcal', 'description': 'Energy', 'group': 'Energy'}, {'value': 39.28, 'units': 'g', 'description': 'Water', 'group': 'Composition'}, {'value': 1573.0, 'units': 'kJ', 'description': 'Energy', 'group': 'Energy'}, {'value': 0.0, 'units': 'g', 'description': 'Fiber, total dietary', 'group': 'Composition'}, {'value': 673.0, 'units': 'mg', 'description': 'Calcium, Ca', 'group': 'Elements'}, {'value': 0.64, 'units': 'mg', 'description': 'Iron, Fe', 'group': 'Elements'}, {'value': 22.0, 'units': 'mg', 'description': 'Magnesium, Mg', 'group': 'Elements'}, {'value': 490.0, 'units': 'mg', 'description': 'Phosphorus, P', 'group': 'Elements'}, {'value': 93.0, 'units': 'mg', 'description': 'Potassium, K', 'group': 'Elements'}, {'value': 690.0, 'units': 'mg', 'description': 'Sodium, Na', 'group': 'Elements'}, {'value': 2.94, 'units': 'mg', 'description': 'Zinc, Zn', 'group': 'Elements'}, {'value': 0.024, 'units': 'mg', 'description': 'Copper, Cu', 'group': 'Elements'}, {'value': 0.021, 'units': 'mg', 'description': 'Manganese, Mn', 'group': 'Elements'}, {'value': 14.5, 'units': 'mcg', 'description': 'Selenium, Se', 'group': 'Elements'}, {'value': 1054.0, 'units': 'IU', 'description': 'Vitamin A, IU', 'group': 'Vitamins'}, {'value': 262.0, 'units': 'mcg', 'description': 'Retinol', 'group': 'Vitamins'}, {'value': 271.0, 'units': 'mcg_RAE', 'description': 'Vitamin A, RAE', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mg', 'description': 'Vitamin C, total ascorbic acid', 'group': 'Vitamins'}, {'value': 0.031, 'units': 'mg', 'description': 'Thiamin', 'group': 'Vitamins'}, {'value': 0.45, 'units': 'mg', 'description': 'Riboflavin', 'group': 'Vitamins'}, {'value': 0.18, 'units': 'mg', 'description': 'Niacin', 'group': 'Vitamins'}, {'value': 0.19, 'units': 'mg', 'description': 'Pantothenic acid', 'group': 'Vitamins'}, {'value': 0.074, 'units': 'mg', 'description': 'Vitamin B-6', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, total', 'group': 'Vitamins'}, {'value': 0.27, 'units': 'mcg', 'description': 'Vitamin B-12', 'group': 'Vitamins'}, {'value': 0.0, 'units': 'mcg', 'description': 'Folic acid', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg', 'description': 'Folate, food', 'group': 'Vitamins'}, {'value': 18.0, 'units': 'mcg_DFE', 'description': 'Folate, DFE', 'group': 'Vitamins'}, {'value': 0.324, 'units': 'g', 'description': 'Tryptophan', 'group': 'Amino Acids'}, {'value': 0.896, 'units': 'g', 'description': 'Threonine', 'group': 'Amino Acids'}, {'value': 1.563, 'units': 'g', 'description': 'Isoleucine', 'group': 'Amino Acids'}, {'value': 2.412, 'units': 'g', 'description': 'Leucine', 'group': 'Amino Acids'}, {'value': 2.095, 'units': 'g', 'description': 'Lysine', 'group': 'Amino Acids'}, {'value': 0.659, 'units': 'g', 'description': 'Methionine', 'group': 'Amino Acids'}, {'value': 0.126, 'units': 'g', 'description': 'Cystine', 'group': 'Amino Acids'}, {'value': 1.326, 'units': 'g', 'description': 'Phenylalanine', 'group': 'Amino Acids'}, {'value': 1.216, 'units': 'g', 'description': 'Tyrosine', 'group': 'Amino Acids'}, {'value': 1.682, 'units': 'g', 'description': 'Valine', 'group': 'Amino Acids'}, {'value': 0.952, 'units': 'g', 'description': 'Arginine', 'group': 'Amino Acids'}, {'value': 0.884, 'units': 'g', 'description': 'Histidine', 'group': 'Amino Acids'}, {'value': 0.711, 'units': 'g', 'description': 'Alanine', 'group': 'Amino Acids'}, {'value': 1.618, 'units': 'g', 'description': 'Aspartic acid', 'group': 'Amino Acids'}, {'value': 6.16, 'units': 'g', 'description': 'Glutamic acid', 'group': 'Amino Acids'}, {'value': 0.439, 'units': 'g', 'description': 'Glycine', 'group': 'Amino Acids'}, {'value': 2.838, 'units': 'g', 'description': 'Proline', 'group': 'Amino Acids'}, {'value': 1.472, 'units': 'g', 'description': 'Serine', 'group': 'Amino Acids'}, {'value': 93.0, 'units': 'mg', 'description': 'Cholesterol', 'group': 'Other'}, {'value': 18.584, 'units': 'g', 'description': 'Fatty acids, total saturated', 'group': 'Other'}, {'value': 8.275, 'units': 'g', 'description': 'Fatty acids, total monounsaturated', 'group': 'Other'}, {'value': 0.83, 'units': 'g', 'description': 'Fatty acids, total polyunsaturated', 'group': 'Other'}]}]

字典的键分别是'id', 'description', 'tags', 'manufacturer', 'group', 'portions', 'nutrients'。

其中nutrients一栏就含有N多内容,我们把文件第一项的nutrients一栏变成DataFrame格式看一下:

nutrients=pd.DataFrame(data[0]['nutrients'])

nutrients的前5行显示如下:

                            description        group    units     value
0 Protein Composition g 25.180
1 Total lipid (fat) Composition g 29.200
2 Carbohydrate, by difference Composition g 3.060
3 Ash Other g 3.280
4 Energy Energy kcal 376.000

可以看出,原文件包含的内容太多,而且现有的格式不方便做数据分析。因此,我们接下来提取需要的数据,并转换其格式。

我们把'id', 'description', 'manufacturer', 'group'这四栏提取出来,并将其变为DataFrame格式:

info=pd.DataFrame(data, columns=['id', 'description', 'manufacturer', 'group'])

这是info的前5行:

     id                         description manufacturer  \
0 1008 Cheese, caraway
1 1009 Cheese, cheddar
2 1018 Cheese, edam
3 1019 Cheese, feta
4 1028 Cheese, mozzarella, part skim milk group
0 Dairy and Egg Products
1 Dairy and Egg Products
2 Dairy and Egg Products
3 Dairy and Egg Products
4 Dairy and Egg Products

接下来让我们看一下每个食物类别分别包含多少数量的食物:

group_count=info["group"].value_counts()

这是group_count的前10行:

Vegetables and Vegetable Products    812
Beef Products 618
Baked Products 496
Breakfast Cereals 403
Fast Foods 365
Legumes and Legume Products 365
Lamb, Veal, and Game Products 345
Sweets 341
Fruits and Fruit Juices 328
Pork Products 328

属于蔬菜和蔬菜制品一类的食物是最多的。

但是info表没有包含营养成分这一栏(我们就是要分析食物的营养成分不是吗?),而nutrients表只有营养成分,却没有显示其对应的食物。因此,我们需要把这两张表结合起来。具体来说,就是先把每个食物的nutrients一栏提取出来,变成DataFrame格式,然后在上面添加对应的食物信息,最后把这些表用concat命令合并在一起。

nutrients=[]

for rec in data:
nutrient=pd.DataFrame(rec["nutrients"])
nutrient["id"]=rec["id"]
nutrient["food"]=rec["description"]
nutrient["food_group"]=rec["group"]
nutrients.append(nutrient) nutri_data=pd.concat(nutrients, ignore_index=True)

nutri_data的前10行显示如下:

                   description        group units    value    id  \
0 Protein Composition g 25.18 1008
1 Total lipid (fat) Composition g 29.20 1008
2 Carbohydrate, by difference Composition g 3.06 1008
3 Ash Other g 3.28 1008
4 Energy Energy kcal 376.00 1008
5 Water Composition g 39.28 1008
6 Energy Energy kJ 1573.00 1008
7 Fiber, total dietary Composition g 0.00 1008
8 Calcium, Ca Elements mg 673.00 1008
9 Iron, Fe Elements mg 0.64 1008 food food_group
0 Cheese, caraway Dairy and Egg Products
1 Cheese, caraway Dairy and Egg Products
2 Cheese, caraway Dairy and Egg Products
3 Cheese, caraway Dairy and Egg Products
4 Cheese, caraway Dairy and Egg Products
5 Cheese, caraway Dairy and Egg Products
6 Cheese, caraway Dairy and Egg Products
7 Cheese, caraway Dairy and Egg Products
8 Cheese, caraway Dairy and Egg Products
9 Cheese, caraway Dairy and Egg Products

这份数据文件每一列分别是:营养成分的名称,营养成分的类别,营养成分的计量单位,营养成分的含量,营养成分所对应的食物id,食物名称,食物类别。

接下来,我们先去除数据中的重复值和NA值,然后就可以开始进行分析了。

nutri_data=nutri_data.drop_duplicates()
nutri_data=nutri_data[nutri_data.notnull()]

比如,我们想要知道每个食物类别中各营养成分的中位数是多少,并从大到小进行排序。我们首先制作一个透视表,以食物类别为行,以营养成分为列,聚合函数为计算中位数:

nutrients_median=pd.pivot_table(nutri_data, values="value", index="food_group", columns="description", aggfunc="median")

这里选取锌元素(Zinc)在各食物类别中的含量中位数进行排序:

zinc_by_foodgroup=nutrients_median["Zinc, Zn"].sort_values(ascending=False)
food_group
Beef Products 5.390
Lamb, Veal, and Game Products 3.940
Nut and Seed Products 3.290
Breakfast Cereals 2.885
Spices and Herbs 2.750
Poultry Products 2.500
Pork Products 2.320
Sausages and Luncheon Meats 2.130
Snacks 1.470
Dairy and Egg Products 1.390
Fast Foods 1.250
Legumes and Legume Products 1.140
Cereal Grains and Pasta 1.090
Ethnic Foods 1.045
Restaurant Foods 0.800
Finfish and Shellfish Products 0.670
Baked Products 0.660
Meals, Entrees, and Sidedishes 0.630
Baby Foods 0.590
Sweets 0.360
Vegetables and Vegetable Products 0.330
Soups, Sauces, and Gravies 0.200
Fruits and Fruit Juices 0.100
Beverages 0.040
Fats and Oils 0.020
Name: Zinc, Zn, dtype: float64

将其画成柱形图:

ax.barh(range(25),zinc_by_foodgroup.values[::-1])
ax.set_yticks(range(25))
ax.set_xticks([i for i in range(7)])
ax.set_yticklabels(zinc_by_foodgroup.index.values[::-1]) plt.show()

牛肉制品的锌含量中位数是最高的。

如果我们想知道各营养成分在哪种食物中含量最高呢?首先,我们以营养成分的类别和营养成分为行进行分组,并以食物为列,制作一个透视表。将此透视表转置,我们就可以轻松选取各营养成分的类别数据,在选中的营养成分的类别上使用idxmax()命令,就可以找出数值最大所对应的食物是哪个了。(注:idxmax()用于DataFrame,argmax()用于Series)

table=pd.pivot_table(nutri_data, values="value", index=["group","description"], columns="food")
max_amino_acids=table.T["Amino Acids"].idxmax()

这里选取Amino Acids这一类别,可以看到第一行营养成分Alanine(丙氨酸)在Gelatins, dry powder, unsweetened食物内含量最高。

description
Alanine Gelatins, dry powder, unsweetened
Arginine Seeds, sesame flour, low-fat
Aspartic acid Soy protein isolate
Cystine Seeds, cottonseed flour, low fat (glandless)
Glutamic acid Soy protein isolate
Glycine Gelatins, dry powder, unsweetened
Histidine Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
Isoleucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Leucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Lysine Seal, bearded (Oogruk), meat, dried (Alaska Na...
Methionine Fish, cod, Atlantic, dried and salted
Phenylalanine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Proline Gelatins, dry powder, unsweetened
Serine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
dtype: object

数据分析---《Python for Data Analysis》学习笔记【04】的更多相关文章

  1. Python for Data Analysis 学习心得(一) - numpy介绍

    一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的 ...

  2. Python for Data Analysis 学习心得(四) - 数据清洗、接合

    一.文字处理 之前在练习爬虫时,常常爬了一堆乱七八糟的字符下来,当时就有找网络上一些清洗数据的方式,这边pandas也有提供一些,可以参考使用看看.下面为两个比较常见的指令,往往会搭配使用. spli ...

  3. Python for Data Analysis 学习心得(三) - 文件读写和数据预处理

    一.Pandas文件读写 pandas很核心的一个功能就是数据读取.导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选.预处理.在读取数据时的选项有超过50个参数,可见panda ...

  4. Python for Data Analysis 学习心得(二) - pandas介绍

    一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Seri ...

  5. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  6. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  7. 数据分析---《Python for Data Analysis》学习笔记【01】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  8. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  9. 1.2 Why Python for Data Analysis(为什么使用Python做数据分析)

    1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 这节我就不进行过多介绍了,Python近几年的发展势头是有目共睹的,尤其是在科学计算,数据处理, ...

随机推荐

  1. 万能pb_ds头文件—bits/extc++.h

    c++中自带了一些非常强大却鲜为人知的功能库—pd_ds库 里面含有红黑树(rb_tree),哈希表(gp_hash_table),可持久化平衡树(rope)等超强数据结构 但是有一件非常令人头痛的事 ...

  2. TS学习随笔(四)->数组的类型

    少侠们,今天我们继续来搞一搞TS 今天我们要来看一看TS中数组的定义是个什么鬼样子 数组的类型: 在 TypeScript 中,数组类型有多种定义方式,比较灵活.下面我们来看看有哪些定义方法 「类型 ...

  3. 欧洲AI规范先行,值得肯定与借鉴 --- 我看欧盟发布AI道德规范

    欧洲AI规范先行,值得肯定与借鉴 --- 我看欧盟发布AI道德规范 [事件回放] 近日,据外媒报道,欧盟委员会(EC)任命的人工智能高级专家小组发布了AI开发和使用的道德草案,内容长达37页,提出可信 ...

  4. 从.Net到Java学习第十一篇——SpringBoot登录实现

    从.Net到Java学习系列目录 通过前面10篇文章的学习,相信我们对SpringBoot已经有了一些了解,那么如何来验证我们的学习成果呢?当然是通过做项目来证明啦!所以从这一篇开始我将会对之前自己做 ...

  5. ps -ef |grep java

    一.ps -ef |grep java 查看包含“java”的所有进程 二.涉及命令详解 ps命令将某个进程显示出来(是LINUX下最常用的也是非常强大的进程查看命令) grep命令是查找(是一种强大 ...

  6. 测者的性能测试手册:快速安装LoadRunner Linux上的Generator

    安装和初始化 安装包 上传Linux.zip(LoadRunner Generator for Linux.zip,后台回复loadrunner获取下载地址),然后通过如下命令: unzip Linu ...

  7. 关于SNMP的MIB文件的语法简述

    源地址:https://blog.csdn.net/carechere/article/details/51236184 SNMP协议的MIB文件的常见宏定义的描述: 对MIB文件中一些常见的宏定义的 ...

  8. 前端面试必备的css盒子模型

    今天同学发给了我一份前端基础的面试题,第一道便是对css盒子模型的理解,我看到的第一眼想到的是div,然后就...懵逼了,知其然不知其所以然.所以打算写一写盒子模型的概念理解啥的,如有写的不当的地方, ...

  9. linux -- 添加、修改、删除路由

    在日常的使用中,或者在服务器中,有两个网卡配置两个地址,访问不同的网络段,这种情况是非常常见的现象,但是,我们需要额外的添加路由表来决定发送的数据包经过正确的网关和interface才能正确的进行通信 ...

  10. websocket 实现单聊群聊 以及 握手原理+加密方式

    WebSocket 开始代码 服务端 群聊 # type:WebSocket 给变量标注类型 # websocket web + socket from geventwebsocket.server ...