前言

在本系列的前三篇中,我们介绍了弹性伸缩的整体布局以及HPA的一些原理,HPA的部分还遗留了一些内容需要进行详细解析。在准备这部分内容的期间,会穿插几篇弹性伸缩组件的最佳实践。今天我们要讲解的是

cluster-proportional-autoscaler 。cluster-proportional-autoscaler是根据集群中节点的数目进行Pod副本数水平伸缩的组件,这个组件的产生主要是为了解决集群的核心组件负载弹性的问题。在一个Kubernetes集群中,除了APIServer等耳熟能详的Control Pannel组件,还有很多系统组件是部署在worker上的,例如CoreDNSIngress ControllerIstio等等。这些核心组件大部分和我们的应用接入层息息相关,也就是说每当我们的系统处理了一条外部的请求,可能都会调用这些组件。那么这就有可能由于这些组件的负载过大,造成应用的QPS达到瓶颈。那么一个集群该运行多少个核心组件副本呢?

很遗憾,这个问题是没有统一答案的,因为不同的类型的应用、不同的网络模型、不同的调度分布,都有可能会带来不同的挑战。在本篇文章中,我们不谈具体的指标和数据,只探讨解法。在本系列后面的文章中,会为大家深入解析。

大部分的情况下,核心组件的副本数目和集群的节点数目是成正比的,一个集群的节点数目越多,核心组件所需要的副本数就越多。今天我们以CoreDNS为例,通过cluster-proportional-autoscaler,来实现一个动态的、基于节点数目的核心组件动态伸缩。

cluster-proportional-autoscaler的使用

cluster-proportional-autoscaler和传统的Kubernetes组件设计有所不同,我们已经见惯了各种ControllerCRD或者Operator,而cluster-proportional-autoscaler走了另外一条非常简单的路。使用cluster-proportional-autoscaler只需要部署一个Yaml并选择一个伸缩的监听对象以及伸缩策略即可。如果需要有多个组件进行伸缩,那就部署多个Yaml,每个Yaml包含一个cluster-proportional-autoscaler。一个使用cluster-proportional-autoscaler弹性伸缩coredns的模板如下。

apiVersion: apps/v1
kind: Deployment
metadata:
name: dns-autoscaler
namespace: kube-system
labels:
k8s-app: dns-autoscaler
spec:
selector:
matchLabels:
k8s-app: dns-autoscaler
template:
metadata:
labels:
k8s-app: dns-autoscaler spec:
containers:
- name: autoscaler
image: registry.cn-hangzhou.aliyuncs.com/ringtail/cluster-proportional-autoscaler-amd64:v1.3.0
resources:
requests:
cpu: "200m"
memory: "150Mi"
command:
- /cluster-proportional-autoscaler
- --namespace=kube-system
- --configmap=dns-autoscaler
- --target=Deployment/coredns
- --default-params={"linear":{"coresPerReplica":16,"nodesPerReplica":2,"min":1,"max": 100,"preventSinglePointFailure": true}}
- --logtostderr=true
- --v=2
serviceAccountName: admin

cluster-proportional-autoscaler的伸缩策略主要有两种,一种是线性模型,一种是梯度模型。

简单的理解,线性模型就是 y = rate * x + min,设置最小值,以及伸缩的区间,并根据当前节点的数目,通过线性模型计算所需的核心组件数目。在上面的例子中,我们用的就是线性模型,线性模型支持的配置参数如下:

{
"coresPerReplica": 2,
"nodesPerReplica": 1,
"min": 1,
"max": 100,
"preventSinglePointFailure": true
}

minmax、以及preventSinglePointFailure都比较好理解,coresPerReplica的意思是按照核心数目来计算副本集,nodesPerReplica是按照节点数目来计算副本集。用一个实际的例子进行举例,例如当前集群有两个节点,每个节点的配置是4C8G,那么如果按照coresPerReplica这个指标计算,则需要弹出4*2/2=4个副本。如果按照nodesPerReplica来计算,则需要弹出2*1 = 2个副本。此时cluster-proportional-autoscaler会取两者之间的大的数值,也就是4作为最后的伸缩数目进行扩容。

梯度模型就是分级的机制,每个梯度对应了一个副本,例如:

{
"coresToReplicas":
[
[ 1, 1 ],
[ 64, 3 ],
[ 512, 5 ],
[ 1024, 7 ],
[ 2048, 10 ],
[ 4096, 15 ]
],
"nodesToReplicas":
[
[ 1, 1 ],
[ 2, 2 ]
]
}

这个配置表示存在coresToReplicasnodesToReplicas两个梯度,其中coresToReplicas的梯度表示,最小为1个副本;CPU核心数目大于3小于64的时候,为2个副本;依次类推。同样nodesToReplicas表示1个节点的时候为1个副本,2个节点的时候为2个副本。

最后

至此,cluster-proportional-autoscaler的使用就给大家讲解完了,建议优先配置CoreDNS的autoscaler,对于负载不高的场景可以考虑节点副本1:2的比例,如果负载比较高,可以1:1的配置进行配置。

原文链接
本文为云栖社区原创内容,未经允许不得转载。

Kubernetes 弹性伸缩全场景解析 (四)- 让核心组件充满弹性的更多相关文章

  1. Kubernetes 弹性伸缩全场景解析 (一)- 概念延伸与组件布局

    传统弹性伸缩的困境 弹性伸缩是Kubernetes中被大家关注的一大亮点,在讨论相关的组件和实现方案之前.首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划与实 ...

  2. Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局

    传统弹性伸缩的困境 弹性伸缩是 Kubernetes 中被大家关注的一大亮点,在讨论相关的组件和实现方案之前.首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划 ...

  3. Kubernetes 弹性伸缩全场景解析(三) - HPA 实践手册

    在上一篇文章中,给大家介绍和剖析了 HPA 的实现原理以及演进的思路与历程.本文我们将会为大家讲解如何使用 HPA 以及一些需要注意的细节. autoscaling/v1 实践 v1 的模板可能是大家 ...

  4. Kubernetes 弹性伸缩全场景解读(二)- HPA 的原理与演进

    前言 在上一篇文章 Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局中,我们介绍了在 Kubernetes 在处理弹性伸缩时的设计理念以及相关组件的布局,在今天这篇文章中,会为大家 ...

  5. Kubernetes 弹性伸缩全场景解读(五) - 定时伸缩组件发布与开源

    作者| 阿里云容器技术专家刘中巍(莫源) 导读:Kubernetes弹性伸缩系列文章为读者一一解析了各个弹性伸缩组件的相关原理和用法.本篇文章中,阿里云容器技术专家莫源将为你带来定时伸缩组件  kub ...

  6. Kubernetes弹性伸缩全场景解读(五) - 定时伸缩组件发布与开源

    前言 容器技术的发展让软件交付和运维变得更加标准化.轻量化.自动化.这使得动态调整负载的容量变成一件非常简单的事情.在kubernetes中,通常只需要修改对应的replicas数目即可完成.当负载的 ...

  7. Serverless 与容器决战在即?有了弹性伸缩就不一样了

    作者 | 阿里云容器技术专家 莫源  本文整理自莫源于 8 月 31 日 K8s & cloudnative meetup 深圳场的演讲内容.****关注"阿里巴巴云原生" ...

  8. Feign Ribbon Hystrix 三者关系 | 史上最全, 深度解析

    史上最全: Feign Ribbon Hystrix 三者关系 | 深度解析 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -25[ 博客园 总入口 ] 前言 疯狂创客圈(笔者尼恩创建的 ...

  9. Kubernetes 弹性伸缩HPA功能增强Advanced Horizontal Pod Autoscaler -介绍部署篇

    背景 WHAT(做什么) Advanced Horizontal Pod Autoscaler(简称:AHPA)是kubernetes中HPA的功能增强. 在兼容原生HPA功能基础上,增加预测.执行模 ...

随机推荐

  1. 我的 FPGA 学习历程(09)—— 时序逻辑入门

    讲到这篇时,组合逻辑就告一段落了,下面是一些总结: 描述组合逻辑时,always 语句中的敏感信号列表中需要列出全部的可能影响输出的变量 描述组合逻辑时,always 语句中的赋值总是使用阻塞赋值符号 ...

  2. Chrome开发者工具面板

    Chrome开发者工具面板 面板上包含了Elements面板.Console面板.Sources面板.Network面板.Timeline面板.Profiles面板.Application面板.Sec ...

  3. Javascript 的变量提升与预解析

    一.什么是变量提升 在ES6之前,JavaScript没有块级作用域(一对花括号{}即为一个块级作用域),只有全局作用域和函数作用域.变量提升即将变量声明提升到它所在作用域的最开始的部分 二.怎么实现 ...

  4. canvas生成海报

    虽然之前也做过类似的生成海报的项目,但是这个项目我又网上查找了一下,发现一个插件挺好用的  html2canvas.js http://html2canvas.hertzen.com/这里可以下载这个 ...

  5. 201771010126 王燕《面向对象设计 java》第十五周实验总结

    第一部分  理论部分 ◼ JAR文件◼ 应用程序首选项存储◼ Java Web Start JAR文件: 1.Java程序的打包:程序编译完成后,程序员将.class文件压缩打包为.jar文件后,GU ...

  6. 基于vue-cli配置移动端自适应

    移动端自适应:手淘的 lib-flexible + rem 配置 flexible 安装 lib-flexible 在命令行中运行如下安装: 1 npm i lib-flexible --save 引 ...

  7. 高精度乘法-17南宁区域赛F -The Chosen One

    题目大意:给你一个n,然后从1~n隔一个选一个,挑出一个集合然后从集合中继续隔一个挑一个,直到只有一个数,问最后一个数是多少?2<=n<=1050 例如n=5,先选出2,4最后选择4.n= ...

  8. LoadRunner(一)——性能测试基础及性能指标概述

    参考学习感谢:<精通软件性能测试与LoadRunner实战> 一.典型的性能测试场景 某个产品要发布了,需要对全市的用户做集中培训.通常在进行培训的时候,老师讲解完成一个业务以后,被培训用 ...

  9. ABP入门系列(5)——展现层实现增删改查

    ABP入门系列目录--学习Abp框架之实操演练 这一章节将通过完善Controller.View.ViewModel,来实现展现层的增删改查.最终实现效果如下图: 一.定义Controller ABP ...

  10. 微信小程序写tab切换

    微信小程序之tab切换效果,如图: 最近在学习微信小程序并把之前的公司app搬到小程序上,挑一些实现效果记录一下(主要是官方文档里没说的,毕竟官方文档只是介绍功能) .wxml代码: <view ...