1、gevent协程适合I/O密集,不适合CPU密集。

3、gevent协程无法发挥多核优势,事实上,协程只是以单线程的方式在运行。

3、子程序就是协程的一种特例

项目实际应用

from gevent import monkey
from gevent.monkey import patch_all
from gevent.pool import Pool
import time def lr_classify():
print('lr_classify') def rf_classify():
print('rf_classify') def svm_classify():
print('svm_classify') def decisionTree_classify():
print('decisionTree_classify') def gbt_classify():
print('gbt_classify') def naive_bayes_classify():
print('naive_bayes_classify') model_dict = {'logistic':lr_classify
,'random_forest':rf_classify
,'linear_svm':svm_classify
,'decision_tree':decisionTree_classify
,'gbt':gbt_classify
,'naive_bayes':naive_bayes_classify} def get_task(names):
return [task for name,task in model_dict.items() if name in names]
# return model_dict.get(name,'no such model') start = time.time() model_list = ['logistic','gbt', 'naive_bayes', 'linear_svm', 'decision_tree', 'random_forest'] names = model_dict.keys()&(set(model_list)) tasks = get_task(names)
p = Pool(6) # jobs = [i for i in range(10)]
for task in tasks:
p.spawn(task)
# for task in tasks:
# p.apply_async(task,(None,))
# p.spawn
p.join()
end = time.time()
print('cost {} seconds in total...'.format((end-start))) #输出结果如下:
lr_classify
svm_classify
gbt_classify
naive_bayes_classify
decisionTree_classify
rf_classify
cost 0.0018892288208007812 seconds in total...

线程进程协程比较

# 多线程
import threading
import time def loop_5(interval):
for i in range(5):
print('loop_5: ',i)
time.sleep(interval) def loop_10(interval):
for i in range(10):
print('loop_10: ',i)
time.sleep(interval) if __name__ == '__main__':
print('start...:')
start = time.time()
threads = []
tasks = [loop_5,loop_10]
for task in tasks:
t = threading.Thread(target=task,args=(1,))
threads.append(t)
t.start()
for t in threads:
t.join()
end = time.time()
print('end...and cost {} seconds in total...'.format((end-start))) # 输出如下
start...:
loop_5: loop_10: 00 loop_5: loop_10: 1
1
loop_10: 2
loop_5: 2
loop_10: 3
loop_5: 3
loop_10: 4
loop_5: 4
loop_10: 5
loop_10: 6
loop_10: 7
loop_10: 8
loop_10: 9
end...and cost 10.02077603340149 seconds in total... #多进程 from multiprocessing import Pool
import time def loop_5(interval):
for i in range(5):
print('loop_5: ',i)
time.sleep(interval) def loop_10(interval):
for i in range(10):
print('loop_10: ',i)
time.sleep(interval) if __name__ == '__main__':
print('start ...')
start = time.time()
p = Pool(2)
tasks = [loop_5,loop_10]
for task in tasks:
p.apply_async(task,args=(1,))
p.close()
p.join()
end = time.time()
print('end...cost {} seconds in total...'.format((end-start))) # 然而,发现多进程仍然耗费 10 秒左右,不难理解啊,因为loop_5虽然跟10交替跑,但是还是要等待10跑完才会主进程结束啊。。。
start ...
loop_5: 0
loop_10: 0
loop_5: 1
loop_10: 1
loop_5: 2
loop_10: 2
loop_5: 3
loop_10: 3
loop_5: 4
loop_10: 4
loop_10: 5
loop_10: 6
loop_10: 7
loop_10: 8
loop_10: 9
end...cost 10.231749534606934 seconds in total... ### 不使用进程池 from multiprocessing import Process
import time def loop_5(interval):
for i in range(5):
print('loop_5: ',i)
time.sleep(interval) def loop_10(interval):
for i in range(10):
print('loop_10: ',i)
time.sleep(interval) if __name__ == '__main__':
print('start ...')
start = time.time()
tasks = [loop_5,loop_10]
processes = []
for task in tasks:
p = Process(target=task,args=(1,))
processes.append(p)
p.start()
for p in processes:
p.join()
end = time.time()
print('end...cost {} seconds in total...'.format((end-start))) #输出结果如下:
start ...
loop_5: 0
loop_10: 0
loop_5: 1
loop_10: 1
loop_5: 2
loop_10: 2
loop_5: 3
loop_10: 3
loop_5: 4
loop_10: 4
loop_10: 5
loop_10: 6
loop_10: 7
loop_10: 8
loop_10: 9
end...cost 10.139782667160034 seconds in total...

协程进行文件复制

from gevent.pool import Pool
import time def copy_file(src,target):
with open(src,'r') as fr:
with open(target,'w') as fw:
for line in fr:
fw.write(line) if __name__ == '__main__':
print('start...')
start = time.time()
p = Pool(6) args = [('./test.py','./test2.py'),('./test.py','./test3.py')] for arg in args:
p.spawn(copy_file,*arg)
p.join()
end = time.time()
print('cost {} seconds in total...'.format((end-start)))

多线程进行文件复制

import threading
import asyncio
import time
def copy(src,tar):
print('{} start...'.format(threading.current_thread().name))
with open(src,'rb') as binFileInputStream:
with open(tar,'wb') as binFileOutputStream:
binFileOutputStream.write(binFileInputStream.read())
time.sleep(10)
print('{} end...'.format(threading.current_thread().name)) threads = []
args = [('./test.py','./hella.py'),('./diabetes.csv','./diabetes.py')]
for i,arg in enumerate(args):
t = threading.Thread(target=copy,args=arg,name='thread-{}'.format(i))
threads.append(t)
for thread in threads:
thread.start() for thread in threads:
thread.join()

多进程

from multiprocessing import Pool
import time
import random
import os def copy_file_multiprocess(src,target):
with open(src,'rb') as fr:
with open(target,'wb') as fw:
print('{} start to copy file...'.format(os.getpid()))
fw.write(fr.read())
time.sleep(random.random()*3)
print('pid {} finished...'.format(os.getpid())) if __name__ == '__main__':
p = Pool(3)
args = [('./config.txt','./babao/config.txt'),('./config.txt','./babao/config2.txt'),('./config.txt','./babao/config3.txt')]
for i in range(3):
p.apply_async(copy_file_multiprocess,args[i])
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All suprocesses finished!')

扩展知识

Python多线程编程时经常会用到join()和setDaemon()方法,基本用法如下:

join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
setDaemon,将该线程标记为守护线程或用户线程 1、join ()方法:主线程A中,创建了子线程B,并且在主线程A中调用了B.join(),那么,主线程A会在调用的地方等待,直到子线程B完成操作后,才可以接着往下执行,那么在调用这个线程时可以使用被调用线程的join方法。
原型:join([timeout]),里面的参数时可选的,代表线程运行的最大时间,即如果超过这个时间,不管这个此线程有没有执行完毕都会被回收,然后主线程或函数都会接着执行的。 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import threading
import time class MyThread(threading.Thread):
def __init__(self, id):
threading.Thread.__init__(self)
self.id = id def run(self):
x = 0
time.sleep(10)
print(self.id)
print('线程结束:'+str(time.time())) if __name__ == "__main__":
t1 = MyThread(999)
print('线程开始:'+str(time.time()))
t1.start()
print('主线程打印开始:'+str(time.time()))
for i in range(5):
print(i)
time.sleep(2)
print('主线程打印结束:' + str(time.time()))
线程开始:1497534590.2784667
主线程打印开始:1497534590.2794669
0
1
2
3
4
主线程打印结束:1497534592.279581
999
线程结束:1497534600.2800388 从打印结果可知,线程t1 start后,主线程并没有等线程t1运行结束后再执行,而是在线程执行的同时,执行了后面的语句。 现在,把join()方法加到启动线程后面(其他代码不变) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import threading
import time class MyThread(threading.Thread):
def __init__(self, id):
threading.Thread.__init__(self)
self.id = id def run(self):
x = 0
time.sleep(10)
print(self.id)
print('线程结束:'+str(time.time())) if __name__ == "__main__":
t1 = MyThread(999)
print('线程开始:'+str(time.time()))
t1.start()
t1.join()
print('主线程打印开始:'+str(time.time()))
for i in range(5):
print(i)
time.sleep(2)
print('主线程打印结束:' + str(time.time()))
线程开始:1497535176.5019968
999
线程结束:1497535186.5025687
主线程打印开始:1497535186.5025687
0
1
2
3
4
主线程打印结束:1497535188.5026832 线程t1 start后,主线程停在了join()方法处,等子线程t1结束后,主线程继续执行join后面的语句。 2、setDaemon()方法。主线程A中,创建了子线程B,并且在主线程A中调用了B.setDaemon(),这个的意思是,把主线程A设置为守护线程,这时候,要是主线程A执行结束了,就不管子线程B是否完成,一并和主线程A退出.这就是setDaemon方法的含义,这基本和join是相反的。此外,还有个要特别注意的:必须在start() 方法调用之前设置。 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import threading
import time class MyThread(threading.Thread):
def __init__(self, id):
threading.Thread.__init__(self)
self.id = id def run(self):
x = 0
time.sleep(10)
print(self.id)
print("This is:" + self.getName()) # 获取线程名称
print('线程结束:' + str(time.time())) if __name__ == "__main__":
t1 = MyThread(999)
print('线程开始:'+str(time.time()))
t1.setDaemon(True)
t1.start()
print('主线程打印开始:'+str(time.time()))
for i in range(5):
print(i)
time.sleep(2)
print('主线程打印结束:' + str(time.time()))
线程开始:1497536678.8509264
主线程打印开始:1497536678.8509264
0
1
2
3
4
主线程打印结束:1497536680.8510408 t1.setDaemon(True)的操作,将子线程设置为了守护线程。根据setDaemon()方法的含义,父线程打印内容后便结束了,不管子线程是否执行完毕了。 如果在线程启动前没有加t1.setDaemon(True),输出结果为: 线程开始:1497536865.3215919
主线程打印开始:1497536865.3215919
0
1
2
3
4
主线程打印结束:1497536867.3217063
999
This is:Thread-1
线程结束:1497536875.3221638 程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程就分兵两路,分别运行,那么当主线程完成想退出时,会检验子线程是否完成,如果子线程未完成,则主线程会等待子线程完成后再退出; 有时我们需要的是,子线程运行完,才继续运行主线程,这时就可以用join方法(在线程启动后面); 但是有时候我们需要的是,只要主线程完成了,不管子线程是否完成,都要和主线程一起退出,这时就可以用setDaemon方法(在线程启动前面)。

这里一个坑 (pool.map 中不能使用匿名函数), 就是 lambda 无法被 pickle,可见匿名函数并不是到处通用 ,正确的 下面再贴出


# -*- coding: utf-8 -*-
__author__ = 'Frank Li'
from functools import wraps,reduce
import threading as td
import multiprocessing as mp
from multiprocessing import Queue
from multiprocessing import Pool
import time def time_count(func):
@wraps(func)
def inner(*args,**kw):
start = time.time()
result = func(*args,**kw)
end = time.time()
num = kw.get('num','default')
print('func: {}-{} cost {:.2f}s\n'.format(func.__name__,num,end-start))# 这里可以插入日志
return result
return inner @time_count
def multicore(data,q,**kw):
q.put(reduce(lambda x,y:x+y,data)) @time_count
def multi_thread(data,q,**kw):
q.put(reduce(lambda x, y: x + y, data)) @time_count
def main_process():
q = Queue()
datas = [range(10**5),range(10**6),range(10**7),range(10**8)]
processes = []
for i,data in enumerate(datas):
p = mp.Process(target=multicore,name='process-{}'.format(i),args=(data,q),kwargs={'num':i})
p.start()
processes.append(p)
for p in processes:
p.join() sum = 0
for n in range(len(datas)):
sum += q.get()
print('main_process sum result: {}\n'.format(sum)) @time_count
def main_thread():
q = Queue()
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
threads = []
for i,data in enumerate(datas):
t = td.Thread(target=multi_thread,name='thread-{}'.format(i),args=(data,q),kwargs={'num':i})
t.start()
threads.append(t) for t in threads:
t.join() sum = 0
for n in range(len(datas)):
sum += q.get()
print('main_thread sum result: {}\n'.format(sum)) def another_multi_process_sub(data):
return reduce(lambda x, y: x + y, data) @time_count
def another_multi_process():
pool = Pool(processes=2)
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
results = []
for data in datas:
res = pool.map(lambda data:lambda x,y:x+y,(data,))
results.extend(res)
sum = reduce(lambda x,y:x+y,results)
print('another_multi_process sum result: {}'.format(sum)) @time_count
def multi_process_pool():
pool = Pool(processes=2)
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
dataset= []
sum = reduce(lambda x,y:x+y,[ pool.apply_async(another_multi_process_sub,(data,)).get() for data in datas])
print('multi_process_pool sum result: {}'.format(sum)) def main():
# main_process()
# main_thread()
another_multi_process()
# multi_process_pool() @time_count
def single_process():
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
sum = 0
for data in datas:
sum += reduce(lambda x,y:x+y,data)
print('\n single process sum result: {}'.format(sum)) if __name__ == '__main__':
main()
single_process()

对比多进程 多线程 效率 , 总结 优先使用顺序 (多进程+协程>多进程 >= 单进程多线程 >=单进程单线程)

# -*- coding: utf-8 -*-
__author__ = 'Frank Li'
from functools import wraps,reduce
import threading as td
import multiprocessing as mp
from multiprocessing import Queue
from multiprocessing import Pool
import time def time_count(func):
@wraps(func)
def inner(*args,**kw):
start = time.time()
result = func(*args,**kw)
end = time.time()
num = kw.get('num','default')
print('func: {}-{} cost {:.2f}s\n'.format(func.__name__,num,end-start))# 这里可以插入日志
return result
return inner @time_count
def multicore(data,q,**kw):
q.put(reduce(lambda x,y:x+y,data)) @time_count
def multi_thread(data,q,**kw):
q.put(reduce(lambda x, y: x + y, data)) @time_count
def main_process():
q = Queue()
datas = [range(10**5),range(10**6),range(10**7),range(10**8)]
processes = []
for i,data in enumerate(datas):
p = mp.Process(target=multicore,name='process-{}'.format(i),args=(data,q),kwargs={'num':i})
p.start()
processes.append(p)
for p in processes:
p.join() sum = 0
for n in range(len(datas)):
sum += q.get()
print('main_process sum result: {}\n'.format(sum)) @time_count
def main_thread():
q = Queue()
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
threads = []
for i,data in enumerate(datas):
t = td.Thread(target=multi_thread,name='thread-{}'.format(i),args=(data,q),kwargs={'num':i})
t.start()
threads.append(t) for t in threads:
t.join() sum = 0
for n in range(len(datas)):
sum += q.get()
print('main_thread sum result: {}\n'.format(sum)) def another_multi_process_sub(data):
return reduce(lambda x, y: x + y, data) @time_count
def another_multi_process():
pool = Pool(processes=2)
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
results = []
for data in datas:
res = pool.map(another_multi_process_sub,(data,))
results.extend(res)
sum = reduce(lambda x,y:x+y,results)
print('another_multi_process sum result: {}'.format(sum)) @time_count
def multi_process_pool():
pool = Pool(processes=2)
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
dataset= []
sum = reduce(lambda x,y:x+y,[ pool.apply_async(another_multi_process_sub,(data,)).get() for data in datas])
print('multi_process_pool sum result: {}'.format(sum)) def main():
main_process()
main_thread()
another_multi_process()
multi_process_pool() @time_count
def single_process():
datas = [range(10 ** 5), range(10 ** 6), range(10 ** 7), range(10 ** 8)]
sum = 0
for data in datas:
sum += reduce(lambda x,y:x+y,data)
print('\n single process sum result: {}'.format(sum)) if __name__ == '__main__':
main()
single_process()

下面结果 可能跟我电脑有其他进程没有关闭有关系,只是贴出一下,这个结果仁者见仁智者见智

# 结果如下 :

func: multicore-0 cost 0.06s

func: multicore-1 cost 0.50s

func: multicore-2 cost 3.51s

func: multicore-3 cost 27.56s

main_process sum result: 5050504944450000

func: main_process-default cost 28.36s

func: multi_thread-0 cost 0.08s

func: multi_thread-1 cost 0.67s

func: multi_thread-2 cost 5.00s

func: multi_thread-3 cost 25.31s

main_thread sum result: 5050504944450000

func: main_thread-default cost 25.36s

another_multi_process sum result: 5050504944450000
func: another_multi_process-default cost 24.31s multi_process_pool sum result: 5050504944450000
func: multi_process_pool-default cost 25.84s single process sum result: 5050504944450000
func: single_process-default cost 25.58s

多核cpu 共享内存 ,进程通信安全问题, p1, p2 都有可能 抢到资源,一个抢到 一顿执行完事儿,第二个才能接着执行

# -*- coding: utf-8 -*-
__author__ = 'Frank Li' import multiprocessing as mp
import time
'''
进程间共享内存,加锁
''' def add_num(v,num,num_lock):
with num_lock:
for _ in range(10):
v.value+=num
time.sleep(0.1)
print(v.value) if __name__ == '__main__':
v = mp.Value('i',0) ### 还有一个 mp.Array
num_lock = mp.Lock()
p1 = mp.Process(target=add_num,args=(v,1,num_lock))
p2 = mp.Process(target=add_num,args=(v,3,num_lock))
p1.start()
p2.start()
p1.join()
p2.join()

线程 操作共享变量 安全 加锁

# -*- coding: utf-8 -*-
__author__ = 'Frank Li'
import threading def thread_job1():
print('current threading... {}'.format(threading.current_thread()))
global A,lock
lock.acquire()
for i in range(10):
A+=1
print('jb1 A value: {}'.format(A))
lock.release() def thread_job2():
print('current threading... {}'.format(threading.current_thread()))
global A,lock
lock.acquire()
for j in range(20):
A+=5
print('job2 value of A: {}'.format(A))
lock.release() def main():
global A,lock
A = 0
lock = threading.Lock() t1 = threading.Thread(target=thread_job1,name='thread-1')
t2 = threading.Thread(target=thread_job2,name='thread-2')
t1.start()
t2.start()
t1.join()
t2.join() if __name__ == '__main__':
main()

多线程

# -*- coding: utf-8 -*-
__author__ = 'Frank Li'
import threading
from threading import Thread
from queue import Queue def thread_job(q,l=None):
print(threading.current_thread())
for i in range(len(l)):
l[i] = l[i]**2
q.put(l) def multithreading(datas=None):
q = Queue()
threads = [] # 线程 列表
# print(datas)
for i,data in enumerate(datas):
print(data)
thread = Thread(target=thread_job,name='thread{}'.format(i),args=(q,data))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
result = [] for _ in range(len(datas)):
result.append(q.get())
print(result) if __name__ == '__main__':
datas = [[1,2],[3,4],[5,6],[7,8]]
multithreading(datas)

python--再看并行之协程线程进程的更多相关文章

  1. python网络-多任务实现之协程(27)

    一.协程 协程,又称微线程,纤程.英文名Coroutine. 协程不是进程,也不是线程,它就是一个函数,一个特殊的函数——可以在某个地方挂起,并且可以重新在挂起处继续运行.所以说,协程与进程.线程相比 ...

  2. Python PEP 492 中文翻译——协程与async/await语法

    原文标题:PEP 0492 -- Coroutines with async and await syntax 原文链接:https://www.python.org/dev/peps/pep-049 ...

  3. Python并发编程——多线程与协程

    Pythpn并发编程--多线程与协程 目录 Pythpn并发编程--多线程与协程 1. 进程与线程 1.1 概念上 1.2 多进程与多线程--同时执行多个任务 2. 并发和并行 3. Python多线 ...

  4. python单线程,多线程和协程速度对比

    在某些应用场景下,想要提高python的并发能力,可以使用多线程,或者协程.比如网络爬虫,数据库操作等一些IO密集型的操作.下面对比python单线程,多线程和协程在网络爬虫场景下的速度. 一,单线程 ...

  5. python并发编程之gevent协程(四)

    协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...

  6. Python的异步编程[0] -> 协程[0] -> 协程和 async / await

    协程 / Coroutine 目录 生产者消费者模型 从生成器到异步协程– async/await 协程是在一个线程执行过程中可以在一个子程序的预定或者随机位置中断,然后转而执行别的子程序,在适当的时 ...

  7. python语法基础-并发编程-协程-长期维护

    ###############    协程    ############## # 协程 # 小知识点, # 协程和进程和线程一样都是实现并发的手段, # 开启一个线程,创建一个线程,还是需要开销, ...

  8. python并发编程之asyncio协程(三)

    协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...

  9. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

随机推荐

  1. Java中字符串相加和字符串常量相加区别

    有一道这样的程序: public class TestStringDemo { public static void main(String[] args) { String s1 = "P ...

  2. 测者的测试技术手册:Java中的null类型是测试不可超越的鸿沟

    null是一个非常非常特殊的类型,对于每一个测试人员都要十分小心null的存在的可能性.同时null也让很多RD头疼,甚至连Java的设计者都成人null是一个设计失误.这篇文章,测者想聊聊这个让很多 ...

  3. d3.svg.line()错误:TypeError: d3.svg.line is not a function

    var line_generator= d3.svg.line() .x(function (d,i) { return i; }) .y(function (d) { return d; }) 错误 ...

  4. LeetCode算法题-Largest Number At Least Twice of Others(Java实现)

    这是悦乐书的第308次更新,第328篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第177题(顺位题号是747).在给定的整数数组中,总有一个最大的元素.查找数组中的最大 ...

  5. LeetCode算法题-Self Dividing Numbers(Java实现)

    这是悦乐书的第305次更新,第324篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第173题(顺位题号是728).自分割数是一个可被其包含的每个数字整除的数字.例如,12 ...

  6. Vue组织架构图组件

    vue-tree-chart   :deciduous_tree: Vue2树形图组件 安装 npm i vue-tree-chart --save 使用 in template: <TreeC ...

  7. 导出zabbix监控数据

    linux memory: mysql -u zabbix -p -h 127.0.0.1 zabbix -e "select h.name, 100-AVG(hi.value_avg) f ...

  8. elasticsearch6.x集群环境部署

    elasticsearch集群部署安装jdk chmod 755 jdk-8u161-linux-x64.tar.gztar -zxvf jdk-8u161-linux-x64.tar.gzcp jd ...

  9. 记录学习antd design pro dva的过程,主要记错, 多图预警,如有理解偏差,忘指出,多谢!

    首要问题: 如何增加菜单项 答案: 在router.config中添加路由,在locales语言国际化增加选项 问题1: 答案1: 问题2: 这个要修改state,正确写法 存在的疑惑:为什么不能直接 ...

  10. 菜鸟学IT之四则运算升级版

     菜鸟学IT之四则运算升级版 本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2213 团队代码github远程仓库的 ...