bzoj1003 物流运输
Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
Sample Input
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
/*
很容易想到是要求最短路,唯一的难点是如何满足码头在一段时间内停工的这个性质
一个可行的规划方案,总是在每一个区间内选定一个确定的路线,这个路线必须满足不能走这段时间内任何一个被禁用的码头
也就是说,在一段时间内满足需求,如果是的话,要求在这个条件下的最短路,于是枚举每一个天数范围内的最短路
然后怎样组合答案,前面提到的答案是由各方案连接起来组成的,假如选这一段区间是一个方案,那么之前天数的一定是最大满足最优子结构,又没有后效性
于是区间dp出答案
一定要注意inf的范围和无向边的问题,第一次出错就在这里
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll inf = 9876543212345678LL;
ll n,m,k,l,t,cnt,flag;
ll head[];
ll vis[][],d_now[],d[][],block[],vis_now[];
ll f[];
struct edge{
ll v;
ll w;
ll nxt;
}e[];
struct GRAPH{
void add_edge(int u,int v,int w){
cnt++;
e[cnt].v = v;
e[cnt].w = w;
e[cnt].nxt = head[u];
head[u] = cnt;
}
ll spfa(int lp,int rp){
flag++;
for(int i = ;i <= m;i++){
d_now[i] = inf;
for(int j = lp;j <= rp;j++){
if(vis[i][j]){
block[i] = flag;
break;
}
}
}
d_now[] = ;
queue<int> q;
q.push();
vis_now[] = flag;
int now;
while(!q.empty()){
now = q.front();
q.pop();
for(int i = head[now];i;i = e[i].nxt){
if(block[e[i].v] == flag) continue;
if(d_now[e[i].v] > d_now[now] + e[i].w){
d_now[e[i].v] = d_now[now] + e[i].w;
if(vis_now[e[i].v] != flag){
q.push(e[i].v);
vis_now[e[i].v] = flag;
}
}
}
vis_now[now] = ;
}
d[lp][rp] = d_now[m];
}
}graph;
void input(){
cin>>n>>m>>k>>l;
int u,v,w;
for(int i = ;i <= l;i++){
scanf("%d%d%d",&u,&v,&w);
graph.add_edge(u,v,w);
graph.add_edge(v,u,w);
}
cin>>t;
for(int i = ;i <= t;i++){
scanf("%d%d%d",&u,&v,&w);
for(int j = v;j <= w;j++) vis[u][j] = true;
}
}
void cal(){
for(int i = ;i <= n;i++){
for(int j = i;j <= n;j++){
graph.spfa(i,j);
}
}
for(int i = ;i <= n;i++){
f[i] = (ll)d[][i]*i;
for(int j = i-;j >= ;j--){
f[i] = min(f[i],f[j] + k + (i-j)*d[j+][i]);
}
}
cout<<f[n];
}
int main(){
input();
cal();
return ;
}
bzoj1003 物流运输的更多相关文章
- bzoj1003物流运输 最短路+DP
bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...
- BZOJ1003 物流运输 最短路+DP
1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...
- BZOJ-1003 物流运输trans SPFA+DP
傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...
- bzoj1003物流运输——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 DP好题: 直接找一个时间段的最短路,并用它来预处理出每个时间段的最小花费: f[i] ...
- BZOJ1003 物流运输 题解
发现\(n,m\)很小,我们可以先把任意\(2\)天的最短路都给求出来,考虑\(DP\),设\(f[i][j]\)表示\(j+1\)~ \(i\)这几天内走的是最短路线的最优方案,显然最优情况下\(j ...
- 【BZOJ1003】物流运输(动态规划,最短路)
[BZOJ1003]物流运输(动态规划,最短路) 题面 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司 ...
- 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp
「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...
- 【题解】物流运输 [ZJ2006] [P1772] [BZOJ1003]
[题解]物流运输 [ZJ2006] [P1772] [BZOJ1003] 传送门:物流运输 \([ZJ2006]\) \([P1772]\) \([BZOJ1003]\) [题目描述] 给定一个含 \ ...
- 【BZOJ1003】【ZJOI2006】物流运输
1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2556 Solved: 1008[Submit] ...
随机推荐
- [HTML]输入框被限制输入某些类型数据
ENTER键可以让光标移到下一个输入框 <input onkeydown="if(event.keyCode==13)event.keyCode=9" > 只能是中文& ...
- Tomcat服务无法开启,点击start不一会就变成stopped
前天在学习J2EE方面技术时,运行一个调试示例,需要用到Tomcat服务,结果使用Myeclipse怎么也打不开服务.之后去尝试手动打开Tomcat服务也无法成功,一直弄了好几个小时.后来,问了一下隔 ...
- [转]说说JSON和JSONP,也许你会豁然开朗,含jQuery用例
本文转自:http://www.cnblogs.com/dowinning/archive/2012/04/19/json-jsonp-jquery.html 前言: 说到AJAX就会不可避免的面临两 ...
- NopCommerce 增加 Customer Settings
预期: 仿照Customer 的 Phone number enabled 和 required 增加MemberType 相关步骤如下: 1.运行站点 Admin -> Settings -& ...
- event.srcElement ,event.fromElement,event.toElement
自然,我们都习惯了 IE,在 IE 中要在函数中获得各事件对象很容易,直接用 event.event.srcElemtn.event.fromElement.event.toElement 就行了.在 ...
- Qt5.7.0配置选项(configure非常详细的参数)
configure是一个命令行工具,用于配置Qt编译到指定平台.configure必须运行于Qt源码根目录.当运行configure时,编译源码使用的是所选工具链中的make工具. 一.源码目录.编译 ...
- ros下boost移植
参考资料: http://blog.chinaunix.net/uid-12226757-id-3427282.html 注意:本链接中只看第一种的方法,验证程序参考以下: Boost安装成功的验证 ...
- Struts2 token禁止重复提交表单
如果服务器响应慢的情况下,用户会重复提交多个表单,这时候有两种设计思想: 1.在客户端使用JS技术,禁止客户重复提交表单.但是这样会使一些不使用浏览器方式登陆的人比如使用底层通信来攻击你的服务器 2. ...
- mybatis的配置
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 微信JSSDK javascript 开发 代码片段,仅供参考
最全面最专业的微信公众平台开发教程:http://www.cnblogs.com/txw1958/p/weixin-js-sdk-demo.html 比较完整的分享教程:http://www.cnbl ...