题意:数字满足的条件是该数字可以被它的每一位非零位整除。

分析:大概的思路我是可以想到的 , 但没有想到原来可以这样极限的化简 , 在数位dp 的道路上还很长呀 ;

我们都知道数位dp 的套路 , 核心的部分就是找到判断这个数的满足条件的方法 , 如果找到了那这个问题就迎刃而解了吧 ;

这个题的条件是数字被每一位非零的数整除,那是不是这个是应该被每一位的最小公倍数整除  ,这里是这道题目的关键!!!!!!!!  1-9的最小公倍数是2520 , 所以其他位数最公倍数都是在2520内的(看这样考虑的话 dp数组只要开2520就好了 ,牛逼!!!)

dfs( pos , num , lcm , limit) : 在第几位 , 当前的数字,当前数字所有非零位的最小公倍数,是否限制。

下面关键的地方又来了: 因为我们枚举完判断是num%lcm是否为0 , 所以!!每次传入num都%2520!! ,这样数组又可以开小了许多 ;

但是因为我们的dp[pos][num][lcm] , 19*2520*2520 , 这个是无法开的 , 那我们这么办呢??

又是一个关键!这里居然用到离散化 !! 牛逼! 所以对于lcm这一维我们需要进行离散化,经过打表可以发现,2520内可以整除2520的只有48个,所以我们可以离散化一下让lcm映射到1-48既可以了这样就可以开19x2520x48大小的了。1-2520中可能是最小公倍数的其实只有48个,经过离散化处理后,dp数组的最后一维可以降到48,这样就不会超了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MOD = ;
int Hash[];
int digit[];
ll dp[][][];
void init(){
int cnt = ;
for(int i = ; i <= MOD; i++){
if(MOD % i == )
Hash[i] = cnt++;
}
}
ll gcd(ll a,ll b){
if(!b)
return a;
else return gcd(b,a%b);
}
ll dfs(int pos,int num,int lcm,int limit){
if(pos == -)
return num % lcm == ;
ll &dpnow = dp[pos][num][Hash[lcm]];
if(!limit && dpnow != -)
return dpnow;
int max_digit = limit ? digit[pos] : ;
ll ans = ;
for(int i = ; i <= max_digit; i++){
ans += dfs((pos - ), ((num * + i) % MOD), (!i ? lcm : lcm * i / gcd(lcm,i)), (limit && i == max_digit));
}
if(!limit) dpnow = ans;
return ans;
}
ll solve(ll n){
int pos = ;
while(n){
digit[pos++] = n % ;
n /= ;
}
return dfs(pos-,,,);
}
int main(){
init();
int t;
cin >> t;
memset(dp,-,sizeof(dp));
while(t--){
ll l,r;
cin >> l >> r;
cout << solve(r) - solve(l-) << endl;
}
return ;
}

CF .Beautiful numbers 区间有多少个数字是可以被它的每一位非零位整除。(数位DP)的更多相关文章

  1. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  2. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

  3. 1009 数字1的数量 数位dp

    1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...

  4. CF 55D - Beautiful numbers(数位DP)

    题意: 如果一个数能被自己各个位的数字整除,那么它就叫 Beautiful numbers.求区间 [a,b] 中 Beautiful numbers 的个数. 分析:先分析出,2~9 的最大的最小公 ...

  5. CF 55 D. Beautiful numbers

    D. Beautiful numbers 链接 题意: 求[L,R]中多少个数字可以整除它们的每一位上的数字. 分析: 要求模一些数字等于0等价于模它们的lcm等于0,所以可以记录当前出现的数字的lc ...

  6. HDU 4352 区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K(数位DP+LIS)

    题目:区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K 思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数.那么只要模拟nlogn写法的 ...

  7. CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)

    题意: 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和 分析:考虑用状态压缩 , 10给位0~9 , 如果之前出现过了某个数字x ,那就拿当 ...

  8. CF D. Beautiful numbers (数位dp)

    http://codeforces.com/problemset/problem/55/D Beautiful Numbers : 这个数能整除它的全部位上非零整数.问[l,r]之间的Beautifu ...

  9. 【数位dp】CF 55D Beautiful numbers

    题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...

随机推荐

  1. 【275】◀▶ Python 控制语句说明

    参考:Python循环语句 01   for 循环语句. 02   while 循环语句. 03   if...else 选择语句. 04   continue 执行循环语句中的下一条循环. 05   ...

  2. springmvc 初始化参数绑定(使用属性编辑器) 来处理类型转换问题

    处理一种日期格式 处理器中的写法: index.jsp中的写法: 处理多种日期格式: 处理器的写法: 自定义的属性编辑器: index.jsp的写法:

  3. 第4章 springboot热部署 4-1 SpringBoot 使用devtools进行热部署

    /imooc-springboot-starter/src/main/resources/application.properties #关闭缓存, 即时刷新 #spring.freemarker.c ...

  4. c# 一维数组,二维数组,多维数组。

    数组就是给一个变量定义多个字符,可以是string也可以是int.或者说是一组变量. 可以更加方便的操作大量数据. 数组的定义1.数组里面的内容必须是同一类型2.数据必须有长度限制 一维数组 *一.数 ...

  5. 使用zookeeper实现服务路由和负载均衡

    三个类: ServiceAProvider ServiceBProvider ServiceConsumer 其中 ServiceAProvider提供的服务名service-A,指向IP为192.1 ...

  6. p4377 [USACO18OPEN]Talent Show

    传送门 分析 经典的01分数规划问题 用01背包check即可 代码 #include<iostream> #include<cstdio> #include<cstri ...

  7. javascript字符串 转 驼峰字符

    字符串  转  驼峰字符 <script type="text/javascript"> var str = 'peng-hui-datou'; function a( ...

  8. SpringMVC 配置式开发-BeanNameUrlHandlerMapping(七)

     第一种处理器映射器BeanNameUrlHandlerMapping.class(注册器映射器 bean节点的class属性中用到的,这种方式dean id属性必须要以“/”开头) 第二种处理器映射 ...

  9. C# DLL(程序集)的生成和调用

    日期:2018年11月24日 环境:Window 10,VS2015 一.利用VS2015自带的工具生成DLL 步骤: 1.利用C#准备一个.cs文件: using System; public cl ...

  10. w2008 R2 401 - 未授权: 由于凭据无效,访问被拒绝。

    1.打开服务器的"IIS信息服务管理器"-->选择你发布的网站-->选择功能视图中的"身份验证"-->右键匿名身份验证,选择"编辑& ...