题意:数字满足的条件是该数字可以被它的每一位非零位整除。

分析:大概的思路我是可以想到的 , 但没有想到原来可以这样极限的化简 , 在数位dp 的道路上还很长呀 ;

我们都知道数位dp 的套路 , 核心的部分就是找到判断这个数的满足条件的方法 , 如果找到了那这个问题就迎刃而解了吧 ;

这个题的条件是数字被每一位非零的数整除,那是不是这个是应该被每一位的最小公倍数整除  ,这里是这道题目的关键!!!!!!!!  1-9的最小公倍数是2520 , 所以其他位数最公倍数都是在2520内的(看这样考虑的话 dp数组只要开2520就好了 ,牛逼!!!)

dfs( pos , num , lcm , limit) : 在第几位 , 当前的数字,当前数字所有非零位的最小公倍数,是否限制。

下面关键的地方又来了: 因为我们枚举完判断是num%lcm是否为0 , 所以!!每次传入num都%2520!! ,这样数组又可以开小了许多 ;

但是因为我们的dp[pos][num][lcm] , 19*2520*2520 , 这个是无法开的 , 那我们这么办呢??

又是一个关键!这里居然用到离散化 !! 牛逼! 所以对于lcm这一维我们需要进行离散化,经过打表可以发现,2520内可以整除2520的只有48个,所以我们可以离散化一下让lcm映射到1-48既可以了这样就可以开19x2520x48大小的了。1-2520中可能是最小公倍数的其实只有48个,经过离散化处理后,dp数组的最后一维可以降到48,这样就不会超了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MOD = ;
int Hash[];
int digit[];
ll dp[][][];
void init(){
int cnt = ;
for(int i = ; i <= MOD; i++){
if(MOD % i == )
Hash[i] = cnt++;
}
}
ll gcd(ll a,ll b){
if(!b)
return a;
else return gcd(b,a%b);
}
ll dfs(int pos,int num,int lcm,int limit){
if(pos == -)
return num % lcm == ;
ll &dpnow = dp[pos][num][Hash[lcm]];
if(!limit && dpnow != -)
return dpnow;
int max_digit = limit ? digit[pos] : ;
ll ans = ;
for(int i = ; i <= max_digit; i++){
ans += dfs((pos - ), ((num * + i) % MOD), (!i ? lcm : lcm * i / gcd(lcm,i)), (limit && i == max_digit));
}
if(!limit) dpnow = ans;
return ans;
}
ll solve(ll n){
int pos = ;
while(n){
digit[pos++] = n % ;
n /= ;
}
return dfs(pos-,,,);
}
int main(){
init();
int t;
cin >> t;
memset(dp,-,sizeof(dp));
while(t--){
ll l,r;
cin >> l >> r;
cout << solve(r) - solve(l-) << endl;
}
return ;
}

CF .Beautiful numbers 区间有多少个数字是可以被它的每一位非零位整除。(数位DP)的更多相关文章

  1. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  2. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

  3. 1009 数字1的数量 数位dp

    1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...

  4. CF 55D - Beautiful numbers(数位DP)

    题意: 如果一个数能被自己各个位的数字整除,那么它就叫 Beautiful numbers.求区间 [a,b] 中 Beautiful numbers 的个数. 分析:先分析出,2~9 的最大的最小公 ...

  5. CF 55 D. Beautiful numbers

    D. Beautiful numbers 链接 题意: 求[L,R]中多少个数字可以整除它们的每一位上的数字. 分析: 要求模一些数字等于0等价于模它们的lcm等于0,所以可以记录当前出现的数字的lc ...

  6. HDU 4352 区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K(数位DP+LIS)

    题目:区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K 思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数.那么只要模拟nlogn写法的 ...

  7. CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)

    题意: 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和 分析:考虑用状态压缩 , 10给位0~9 , 如果之前出现过了某个数字x ,那就拿当 ...

  8. CF D. Beautiful numbers (数位dp)

    http://codeforces.com/problemset/problem/55/D Beautiful Numbers : 这个数能整除它的全部位上非零整数.问[l,r]之间的Beautifu ...

  9. 【数位dp】CF 55D Beautiful numbers

    题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...

随机推荐

  1. python操作excel的读写

    1.下载xlrd和xlwt pip install xlwd pip install xlrd pip install xlutils 2.读写操作(已存在的excel) #-*- coding:ut ...

  2. Acviticy.this 和 getApplicationContext()的区别

    用AlertDialog 举例 AlertDialog对象是依赖于一个View的,而View是和一个Activity对应的,在Activity销毁的时候它也就销毁了,不会再存在.Activity.th ...

  3. php中使用array_reduce给数组降维

    PHP里面最强大的工具,就是数组,它融合了多种数据结构的特点,数组.队列.栈.哈希表等等,而且容器可以兼容各种类型,任意嵌套,简直无所不能.围绕着数组,PHP原生支持了一些列的函数,使得数组在实际编程 ...

  4. linux磁盘分区fdisk分区和parted分区

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 磁盘分区 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...

  5. a标签中href=""的几种用法(转)

    a标签中href=""的几种用法   标签: html / a标签 / javascript 46371 众所周知,a标签的最重要功能是实现超链接和锚点.而且,大多数人认为a标签最 ...

  6. Ros学习——C++发布器publisher和订阅器subscriber

    1.编写发布器 初始化 ROS 系统 在 ROS 网络内广播我们将要在 chatter 话题上发布 std_msgs/String 类型的消息 以每秒 10 次的频率在 chatter 上发布消息 在 ...

  7. nginx负载均衡, 配置地址带端口

    nginx.conf  配置如下: upstream wlcf.dev.api { server 127.0.0.1:8833; server 127.0.0.2:8833; } server { l ...

  8. 添加超级链接为什么用a标签

    a是anchor的简写,中文意思是锚点,而锚点的引申意思是连接,link已经被html占用了,只能用a来表示连接了.

  9. Inheritance with EF Code First: Part 2 – Table per Type (TPT)

    In the previous blog post you saw that there are three different approaches to representing an inher ...

  10. 关于setVisibility的几个常量

    在xml文件中,view控件一般都会有android:visibility这个属性 android:visibility:gone|cisible|invisible 在代码中,可以通过方法setVi ...