传送门

分析
我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1]

这中间的0是为了起间隔作用的。

我们又知道b[i]=a[i-1]^a[i+1]

c[i]=b[i-1]^b[i+1]=a[i-2]^a[i]^a[i]^a[i+2]=a[i-2]^a[i+2]

所以如果这个环进化了2d次,则c[i]=a[i-2d]^a[i+2d]

所以我们二进制拆分一下就可以了。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const long long LOG = ;
char s[];
long long a[],b[];
int main(){
long long n,m,t,i,j,k;
scanf("%lld%lld",&t,&n);
scanf("%s",s);
m=*n+;
a[]=;
for(i=;i<=n;i++)a[i]=s[i-]-'';
a[n+]=;
for(i=n+;i<=*n+;i++)a[i]=a[n-(i-n-)+];
for(i=LOG;i>=;i--)
if((1ll<<i)&t){
for(j=;j<m;j++)
b[j]=a[(j-(1ll<<i)%m+m)%m]^a[(j+(1ll<<i)%m)%m];
for(j=;j<m;j++)a[j]=b[j];
}
for(i=;i<=n;i++)printf("%lld",a[i]);
return ;
}

ZROI2018提高day5t3的更多相关文章

  1. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  2. ZROI2018提高day6t2

    传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...

  3. ZROI2018提高day6t1

    传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...

  4. ZROI2018提高day5t2

    传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...

  5. ZROI2018提高day5t1

    传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...

  6. ZROI2018提高day4t3

    传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...

  7. ZROI2018提高day4t2

    传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...

  8. ZROI2018提高day4t1

    传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...

  9. ZROI2018提高day3t3

    传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...

随机推荐

  1. 面试题42:翻转单词顺序VS左旋转字符串

    题目一:输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变.为简单起见,标点符号和普通字母一样处理. 例如输入字符串“I am a student.",则输出"stud ...

  2. UVALive 3708 Graveyard(思维题)

    将原有的每个雕塑的坐标位置,映射在一个总长为n+m的数轴上,设第一个点的坐标为0,(新的等分点必然有至少有一个和原来n等分的等分点重合,因为等分点可以等距的绕圆周旋转,总可以转到有至少一个重合的,不妨 ...

  3. AutoCAD2014的安装与激活

    1.安装包与激活文件的下载 链接:https://pan.baidu.com/s/1I2-x9T__sQAgtvjkOyc_1Q 密码:5pd1 2.CAD的安装 此过程没什么特殊要求,安装时随便输入 ...

  4. git常用命令收藏

    git init //初始化本地git环境 git clone XXX//克隆一份代码到本地仓库 git pull //把远程库的代码更新到工作台 git pull --rebase origin m ...

  5. VueJs路由跳转——vue-router的使用

    对于单页应用,官方提供了vue-router进行路由跳转的处理,本篇主要也是基于其官方文档写作而成. 安装 基于传统,我更喜欢采用npm包的形式进行安装. npm install vue-router ...

  6. UVA - 11754 Code Feat (分块+中国剩余定理)

    对于一个正整数N,给出C组限制条件,每组限制条件为N%X[i]∈{Y1,Y2,Y3,...,Yk[i]},求满足条件的前S小的N. 这道题很容易想到用中国剩余定理,然后用求第k小集合的方法输出答案.但 ...

  7. 数据库使用JDBC连接的方式

    下面罗列了各种数据库使用JDBC连接的方式,可以作为一个手册使用. 1.Oracle8/8i/9i/10g/11g数据库(thin模式) Class.forName("oracle.jdbc ...

  8. 10个 NPM 使用技巧

    对于一个项目,常用的一些npm简单命令包含的功能有:初始化一个文件夹( npm init ),下载npm模块( npm install ),创建测试( npm tese ) 和自定义脚本( npm r ...

  9. 如何用nodejs启一个前端服务

    1.新建文件夹,如 notice 2.新建页面和js文件,如 index.html server.js 3.index.html页面内容随你写,如: <!DOCTYPE html> < ...

  10. MariaDB10.1找回密码

    C:\Program Files\MariaDB 10.1\data下面的my.ini文件,在[mysqld]节点下,增加一句: skip-grant-tables  重启MariaDB服务(mysq ...