[luogu3767]膜法

luogu

神仙题

线段树分治+带权并查集

把每个操作看成点

首先这个操作的结构是一棵树

你发现每个点的对它的子树产生影响

我们可以想到用dfn序把它转成一段区间用线段树分治来做

但是还有删除操作,相当于在一个大区间里面挖掉几个小区间

可以对每个操作开一个vector记录区间搞一搞

然后带权并查集是模5意义下的,可以认为给你的操作相当于从u连向v的一条权值为1或2的边

当u,v在同一个集合时,判断是否满足条件,否则就连边

#define pb push_back
#define ls x<<1,l,mid
#define rs x<<1|1,mid+1,r
#include<bits/stdc++.h>
using namespace std;
const int _=1e5+5;
int re(){
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
int n,m,ts,top,dis;
int fa[_],del[_],sz[_],dfn[_],par[_],siz[_],d[_];
bool ans[_];
struct node{int u,v;}st[_];
struct edge{int u,v,w;}e[_];
vector<int>son[_],s[_];
vector<edge>t[_<<2];
void dfs(int u){
sz[u]=1;if(u)dfn[u]=++ts;
if(del[u])s[del[u]].pb(u);
for(int i=0,j=son[u].size();i<j;i++){
int v=son[u][i];
dfs(v);sz[u]+=sz[v];
}
}
void add(int&x,int y){x=(x+y)%5;}
int find(int x){
add(dis,d[x]);
if(x==par[x])return x;
return find(par[x]);
}
void upd(int x,int l,int r,int ql,int qr,edge E){
if(ql<=l&&r<=qr){t[x].pb(E);return;}
int mid=(l+r)>>1;if(ql<=mid)upd(ls,ql,qr,E);
if(qr>mid)upd(rs,ql,qr,E);
}
void solve(int x,int l,int r,bool ok){
int pre=top;
for(int i=0,j=t[x].size();i<j;i++){
int u=t[x][i].u,v=t[x][i].v,w=t[x][i].w;
dis=0;int fu=find(u),du=dis;
dis=0;int fv=find(v),dv=dis;
if(fu==fv&&(du-dv+5)%5!=w)ok=0;
if(fu^fv){
if(siz[fu]>siz[fv]){swap(du,dv);swap(u,v);swap(fu,fv);w=-w;}
siz[fv]+=siz[fu];par[fu]=fv;
d[fu]=(w+dv-du+10)%5;st[++top]=(node){fu,fv};
}
}
if(l==r)ans[l]=ok;
else{int mid=(l+r)>>1;solve(ls,ok);solve(rs,ok);}
while(top^pre){
int u=st[top].u,v=st[top].v;top--;
siz[v]-=siz[u];par[u]=u;d[u]=0;
}
}
int main(){
n=re(),m=re();
int op,u,v;
for(int i=1;i<=m;i++){
son[fa[i]=re()].pb(i);op=re();
if(op==3)del[i]=re();
else{u=re(),v=re();e[i]=(edge){u,v,op};}
}
dfs(0);
for(int i=1;i<=m;i++){
if(del[i])continue;
int k=s[i].size(),lst=dfn[i];
for(int j=0;j<k;j++){
int u=s[i][j];
if(lst<dfn[u])upd(1,1,m,lst,dfn[u]-1,e[i]);
lst=dfn[u]+sz[u];
}
if(lst<dfn[i]+sz[i])upd(1,1,m,lst,dfn[i]+sz[i]-1,e[i]);
}
for(int i=1;i<=n;i++)par[i]=i,siz[i]=1;
solve(1,1,m,1);
for(int i=1;i<=m;i++)puts(ans[dfn[i]]?"excited":"naive");
return 0;
}

[luogu3767]膜法的更多相关文章

  1. 【OpenJudge3531】【背包DP】【膜法交配律】判断整除

    判断整除 总时间限制: 1000ms 内存限制: 65536kB [描述] 一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和.比如序列:1.2.4共有8种可能的序列:(+1) + (+ ...

  2. luogu P3767 膜法

    传送门 这题如果没有删除操作,可以直接使用可持久化并查集 注意到这种可持久化的依赖关系(是这样说的把)是一棵树,然后对于一个点,自己的操作会影响自己的那棵子树,并且如果是删除操作,就会使得一个子树没有 ...

  3. B - 低阶入门膜法 - D-query (查询区间内有多少不同的数)

    题目链接:https://cn.vjudge.net/contest/284294#problem/B 题目大意:查询区间内有多少个不相同的数. 具体思路:主席树的做法,主席树的基础做法是查询区间第k ...

  4. A - 低阶入门膜法 - K-th Number (主席树查询区间第k小)

    题目链接:https://cn.vjudge.net/contest/284294#problem/A 题目大意:主席树查询区间第k小. 具体思路:主席树入门. AC代码: #include<i ...

  5. BZOJ3669 膜法森林 - LCT

    Solution 非常妙的排序啊... 仔细想想好像确实能够找出最优解QUQ 先对第一关键字排序, 在$LCT$ 维护第二关键字的最大值 所在的边. 添边时如果$u, v$ 不连通 就直接加边.  如 ...

  6. 2018.10.16 NOIP模拟 膜法(组合数学)

    传送门 原题,原题,全TM原题. 不得不说天天考原题. 其实这题我上个月做过类似的啊,加上dzyodzyodzyo之前有讲过考试直接切了. 要求的其实就是∑i=lr(ii−l+k)\sum _{i=l ...

  7. NOIP模拟题 膜法

    题目大意 给定若干组询问求$\sum\limits_{i=l}^r \dbinom{i}{k}$. 最终输出每组询问答案的乘积. 题解 首先把$l,r$分开处理相减,只需要求$\sum\limits_ ...

  8. 【bzoj5055】膜法师(离散化+树状数组)

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=5055 这道题……不得不说,从标题到题面都能看出一股浓浓的膜法气息……苟…… 题意就是统计顺序 ...

  9. 【PCB】扫盲总结

    1.PCB是什么 PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体.由于它是采用电子印刷 ...

随机推荐

  1. 2017.7.1 ftp文件服务器安装与配置(已验证可使用)

    下载地址:http://learning.happymmall.com/ 1.点击exe文件 2.启动ftpserver 点击exe后,就出现如下画面:输入账户密码和勾选权限等. 并配置好对应的文件夹 ...

  2. Restful风格的前后端分离

    1.概述 ResultFul推荐每个URL能操作具体的资源,而且能准确描述服务器对资源的处理动作,通常服务器对资源支持get/post/put/delete/等,用来实现资源的增删改查.前后端分离的话 ...

  3. search-a-2d-matrix——二维矩阵找数

    题目描述 Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the ...

  4. flex-direction用法解释

    语法: flex-direction:row | row-reverse | column | column-reverse 默认值:row 适用于:flex容器 继承性:无 动画性:否 计算值:指定 ...

  5. Android 开发 Eclipse使用SVN

    1 help--->install new software--->add 2 name自定义 location填入内容见3 3 http://subclipse.tigris.org/s ...

  6. Eclipse 经常使用快捷键

    一.File 二.Edit Ctrl + 1  有益写错,让编辑器提醒改动 三.Refactor 抽取为全局变量 Refactor - Convert Local Variable to Field ...

  7. maven依赖json-lib失败

    © 版权声明:本文为博主原创文章,转载请注明出处 项目中需要使用到JSONArray,因此到将json-lib的依赖加入pom.xml中,但是一直下载失败 <dependency> < ...

  8. hdu 4601 Letter Tree

    不easy啊.. 一个小错误让我wa死了.找了一个晚上,怎么都找不到 最后是对拍代码找到的错误.发现当步数比較小的时候答案就是对的,比較大的时候就不正确了 想到一定是什么地方越界了.. . power ...

  9. 使用spring-boot-admin对spring-boot服务进行监控(转自牛逼的人物)

    尊重原创:http://www.cnblogs.com/ityouknow/p/8440455.html 上一篇文章<springboot(十九):使用Spring Boot Actuator监 ...

  10. openWRT自学---自己编译的第一个 backfire10.03 版本的过程记录 --- 实际是由于下载了错误的backfire源码包导致的

    基于 backfire10.03(从http://downloads.openwrt.org/backfire/10.03/ 中下砸的源码包backfire_10.03_source.tar.bz2: ...