pytorch官网教程+注释

Classifier

import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=3,
shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=3,
shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Files already downloaded and verified
Files already downloaded and verified
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img/2 + 0.5 # 因为之前标准化的时候除以0.5就是乘以2,还减了0.5,所以回复原来的亮度值
npimg = img.numpy()
plt.imshow(np.transpose(npimg,(1,2,0))) # c,h,w -> h,w,c
plt.show()
dataiter = iter(trainloader)
images,labels = dataiter.next()
print(images.shape) #torch.Size([4, 3, 32, 32]) bchw
print(torchvision.utils.make_grid(images).shape) #torch.Size([3, 36, 138])
#imshow(torchvision.utils.make_grid(images)) # 以格子形式显示多张图片
#print(" ".join("%5s"% classes[labels[j]] for j in range(4)))
torch.Size([3, 3, 32, 32])
torch.Size([3, 36, 104])
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,5)
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1,16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)
for epoch in range(2):
running_loss = 0.0
for i,data in enumerate(trainloader):
inputs,labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i%2000 ==1999:
print('[%d,%5d] loss:%.3f'%(epoch+1,i+1,running_loss/2000))
running_loss = 0.0
print("finished training")
[1, 2000] loss:1.468
[1, 4000] loss:1.410
[1, 6000] loss:1.378
[1, 8000] loss:1.363
[1,10000] loss:1.330
[1,12000] loss:1.299
[2, 2000] loss:1.245
[2, 4000] loss:1.217
[2, 6000] loss:1.237
[2, 8000] loss:1.197
[2,10000] loss:1.193
[2,12000] loss:1.196
finished training
dataiter = iter(testloader)
images,labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))

outputs = net(images)
_,predicted = torch.max(outputs,1)
print("predicted"," ".join([classes[predicted[j]] for j in range(4)]))
predicted cat ship ship ship
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images,labels = data
outputs = net(images)
_,predicted = torch.max(outputs.data,1)
total += labels.size(0) # 等价于labels.size()[0]
correct+= (predicted==labels).sum().item()
print("acc:{}%%".format(100*correct/total))
acc:56.96%%
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
cpu
net.to(device)
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)

DataLoading And Processing

from __future__ import print_function,division
import os
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,utils
import warnings
from skimage import io,transform
warnings.filterwarnings("ignore")
plt.ion()
landmarks_frame = pd.read_csv("data/faces/face_landmarks.csv") # name x y x y ...
#print(landmarks_frame.columns.tolist())
n = 65 # 第65个样本
img_name = landmarks_frame.iloc[n,0]# 第65个样本的文件名
#print(img_name)
#print(landmarks_frame.iloc[n,1:])
landmarks = landmarks_frame.iloc[n,1:].as_matrix()# 第65个样本的样本值向量
#如果不加上as_matrix的结果就是feature name + feature val,加了之后只有feature val
#print(landmarks)
landmarks = landmarks.astype('float').reshape(-1,2) # 两个一组,组成两列的矩阵
def show_landmarks(image,landmarks):
plt.imshow(image)
plt.scatter(landmarks[:,0],landmarks[:,1],s=10,marker='.',c='r')
#plt.pause(0.001) # python 窗口用得着
plt.figure()
show_landmarks(io.imread(os.path.join("data/faces/",img_name)),landmarks)

# torch.utils.data.Dataset 是一个抽象类,我们的dataset需要继承这个类,才能对其进行操作
class FaceLandmarksDataset(Dataset):
def __init__(self,csv_file,root_dir,transform=None):
self.landmarks_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self,idx):
img_name = os.path.join(
self.root_dir,
self.landmarks_frame.iloc[idx,0]
)
image = io.imread(img_name)
landmarks = self.landmarks_frame.iloc[idx,1:].as_matrix()
landmarks = landmarks.astype('float').reshape([-1,2])
sample = {"image":image,"landmarks":landmarks}
if self.transform:
sample = self.transform(sample)
return sample
face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',root_dir='data/faces/')
fig = plt.figure()
for i in range(len(face_dataset)):
sample = face_dataset[i]
print(i,sample['image'].shape,sample['landmarks'].shape)
ax = plt.subplot(1,4,i+1)
#plt.tight_layout()
ax.set_title("sample #{}".format(i))
ax.axis("off")
show_landmarks(**sample) #**为python 拆包,将dict拆解为x=a,y=b的格式
if i==3:
plt.show()
break
0 (324, 215, 3) (68, 2)
1 (500, 333, 3) (68, 2)
2 (250, 258, 3) (68, 2)
3 (434, 290, 3) (68, 2)

class Rescale():
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple)) # 必须是int或tuple类型,否则报错,要习惯用assert isinstance
self.output_size = output_size
def __call__(self,sample): # 这个类的对象是一个函数,所以定义call
image,landmarks = sample['image'],sample['landmarks']
h,w = image.shape[:2]
if isinstance(self.output_size,int): # 如果只输入了一个值,则以较短边为基准保持长宽比率不变变换
if h>w:
new_h,new_w = self.output_size*h/w,self.output_size
else:
new_h,new_w = self.output_size,self.output_size*w/h
else: #给定一个size那就直接变成这个size
new_h,new_w = output_size
new_h,new_w = int(new_h),int(new_w)
img = transform.resize(image,(new_h,new_w)) # 进行resize操作,调用的是skimage的resize,提供(h,w),跟opencv相反
landmarks = landmarks * [new_w/w,new_h/h]# 相应的,landmark也要做转换
return {"image":img,"landmarks":landmarks} # 返回dict
class RandomCrop():
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple))
if isinstance(output_size,int):
self.output_size = (output_size,output_size)
else:
assert len(output_size) ==2
self.output_size = output_size
def __call__(self,sample):
image,landmarks = sample['image'],sample['landmarks']
h,w = image.shape[:2]# 原图宽高
new_h,new_w = self.output_size # 裁剪的宽高
top = np.random.randint(0,h-new_h) # 裁剪输出图像最上端
left = np.random.randint(0,w-new_w) # 最左端,保证取的时候不越界
image = image[top:top+new_h,left:left+new_w] # 随机裁剪
landmarks = landmarks - [left,top] # 这里landmarks同样也需要做变换,之所以减去[left,top]是因为存储的是x,y对应的轴是w轴和h轴
return {"image":image,"landmarks":landmarks}
class ToTensor():
def __call__(self,sample):
image,landmarks = sample['image'],sample['landmarks']
image = image.transpose((2,0,1)) # transpose实质是reshape
# skimage的shape [h,w,c]
# torch的shape [c,h,w]
return {"image":torch.from_numpy(image),"landmarks":torch.from_numpy(landmarks)}
scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),RandomCrop(224)]) # 组合变换
fig = plt.figure()
sample = face_dataset[65]
for i,tsfrm in enumerate([scale,crop,composed]): # 三种变换
transformed_sample = tsfrm(sample) # 应用其中之一
ax = plt.subplot(1,3,i+1)
plt.tight_layout()
show_landmarks(**transformed_sample)
plt.show()

transformed_dataset = FaceLandmarksDataset(csv_file = 'data/faces/face_landmarks.csv',
root_dir="data/faces/",
transform=transforms.Compose(
[
Rescale(256),
RandomCrop(224),
ToTensor()
])
)
for i in range(len(transformed_dataset)):
sample = transformed_dataset[i]
print(i,sample['image'].size(),sample['landmarks'].size())
if i==3:
break
0 torch.Size([3, 224, 224]) torch.Size([68, 2])
1 torch.Size([3, 224, 224]) torch.Size([68, 2])
2 torch.Size([3, 224, 224]) torch.Size([68, 2])
3 torch.Size([3, 224, 224]) torch.Size([68, 2])
dataloader = DataLoader(transformed_dataset,batch_size=4,shuffle=True,num_workers=4) # 调用dataloader
def show_landmarks_batch(sample_batched):
images_batch,landmarks_batch = sample_batched['image'],sample_batched['landmarks']
batch_size = len(images_batch)
im_size = images_batch.size(2) #这里的size是shape
grid = utils.make_grid(images_batch) # 多张图变成一张图
plt.imshow(grid.numpy().transpose(1,2,0)) # reshape到能用plt显示
for i in range(batch_size):
# 第i张图片的所有点的x,所有点的y,后面 + i*im_size是由于所有图像水平显示,所以需要水平有个偏移
# 转numpy是因为torch类型的数据没办法scatter
plt.scatter(landmarks_batch[i,:,0].numpy() + i*im_size,
landmarks_batch[i,:,1].numpy(),
s=10,marker='.',c='r')
plt.title("batch from dataloader")
for i_batch,sample_batched in enumerate(dataloader):
if i_batch ==3:
plt.figure()
show_landmarks_batch(sample_batched)
plt.axis("off") # 关闭坐标系
plt.ioff()
plt.show()
break
<built-in method size of Tensor object at 0x7f273f3bad38>

[pytorch] 官网教程+注释的更多相关文章

  1. 训练DCGAN(pytorch官网版本)

    将pytorch官网的python代码当下来,然后下载好celeba数据集(百度网盘),在代码旁新建celeba文件夹,将解压后的img_align_celeba文件夹放进去,就可以运行代码了. 输出 ...

  2. Unity 官网教程 -- Multiplayer Networking

    教程网址:https://unity3d.com/cn/learn/tutorials/topics/multiplayer-networking/introduction-simple-multip ...

  3. MongoDB 官网教程 下载 安装

    官网:https://www.mongodb.com/ Doc:https://docs.mongodb.com/ Manual:https://docs.mongodb.com/manual/ 安装 ...

  4. ECharts概念学习系列之ECharts官网教程之在 webpack 中使用 ECharts(图文详解)

    不多说,直接上干货! 官网 http://echarts.baidu.com/tutorial.html#%E5%9C%A8%20webpack%20%E4%B8%AD%E4%BD%BF%E7%94% ...

  5. ECharts概念学习系列之ECharts官网教程之自定义构建 ECharts(图文详解)

    不多说,直接上干货! 官网 http://echarts.baidu.com/tutorial.html#%E8%87%AA%E5%AE%9A%E4%B9%89%E6%9E%84%E5%BB%BA%2 ...

  6. KnockoutJs官网教程学习(一)

    这一教程中你将会体验到一些用knockout.js和Model-View-ViewModel(MVVM)模式去创建一个Web UI的基础方式. 将学会如何用views(视图)和declarative ...

  7. scrapy1_官网教程

    https://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/tutorial.html 本篇文章主要介绍如何使用编程的方式运行Scrapy爬虫. 在开始本文之 ...

  8. Unreal Engine 4官网教程

    编辑器纵览 https://www.unrealengine.com/zh-CN/blog/editor-overview 虚幻编辑器UI布局概述 https://www.unrealengine.c ...

  9. Postman 官网教程,重点内容,翻译笔记,

    json格式的提交数据需要添加:Content-Type :application/x-www-form-urlencoded,否则会导致请求失败 1. 创建 + 测试: 创建和发送任何的HTTP请求 ...

随机推荐

  1. shell read line

    cat >b <<EOF line1 line2 line3 EOF # 方法1 while read line do echo ${line} done < <(cat ...

  2. 在word2010中添加带滚动条的文本框

    由于文件内容过长,为了加强文章的可读性,可以添加一个带滚动条的文本框,既能使文章看起来干净整洁,同时也极大的提高了文章的可读性. 我这里对在word2010中文本框带滚动条作个介绍: 1. 打开wor ...

  3. vue.js入门环境搭建

    1.node.js环境(npm包管理器) 2.vue-cli手脚架构建工具 3.cnpm npm的淘宝镜像 安装node.js 从node.js官网下载并安装node,安装过程一路“下一步”就可以 安 ...

  4. 转 JDBC连接数据库(二)——连接池

    https://www.cnblogs.com/xiaotiaosi/p/6398371.html 数据库保持长连接,不过一直都是idle,除非有用户激活连接,这样后果是无法删除用户,但是不影响数据库 ...

  5. c++ 封装线程库 2

    1.2线程回收: 首先得知道线程的两个状态: Joinable Detached 简单理解,如果一个线程是joinable的状态,那么这样的线程,就必须使用pthread_join来回收,否则程序结束 ...

  6. python get_dummies与cut离散化数据

  7. 如何成为一名:黑客/Programmer/Python高手

    如何成为一名黑客 Eric Steven Raymond https://translations.readthedocs.org/en/latest/hacker_howto.html How To ...

  8. How to Fold a Julia Fractal

    How to Fold a Julia FractalA tale of numbers that like to turn http://acko.net/blog/how-to-fold-a-ju ...

  9. maya怎样卸载干净

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  10. 怎么查找Linux系统调用

    目前都是这么找: git grep SYSCALL_DEFINE | grep signal系统调用的函数名本来是叫sys_xxx,现在都是用宏SYSCALL_DEFINE(XXX),搞得无法找到sy ...