pytorch官网教程+注释

Classifier

import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=3,
shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=3,
shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Files already downloaded and verified
Files already downloaded and verified
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img/2 + 0.5 # 因为之前标准化的时候除以0.5就是乘以2,还减了0.5,所以回复原来的亮度值
npimg = img.numpy()
plt.imshow(np.transpose(npimg,(1,2,0))) # c,h,w -> h,w,c
plt.show()
dataiter = iter(trainloader)
images,labels = dataiter.next()
print(images.shape) #torch.Size([4, 3, 32, 32]) bchw
print(torchvision.utils.make_grid(images).shape) #torch.Size([3, 36, 138])
#imshow(torchvision.utils.make_grid(images)) # 以格子形式显示多张图片
#print(" ".join("%5s"% classes[labels[j]] for j in range(4)))
torch.Size([3, 3, 32, 32])
torch.Size([3, 36, 104])
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,5)
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1,16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)
for epoch in range(2):
running_loss = 0.0
for i,data in enumerate(trainloader):
inputs,labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i%2000 ==1999:
print('[%d,%5d] loss:%.3f'%(epoch+1,i+1,running_loss/2000))
running_loss = 0.0
print("finished training")
[1, 2000] loss:1.468
[1, 4000] loss:1.410
[1, 6000] loss:1.378
[1, 8000] loss:1.363
[1,10000] loss:1.330
[1,12000] loss:1.299
[2, 2000] loss:1.245
[2, 4000] loss:1.217
[2, 6000] loss:1.237
[2, 8000] loss:1.197
[2,10000] loss:1.193
[2,12000] loss:1.196
finished training
dataiter = iter(testloader)
images,labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))

outputs = net(images)
_,predicted = torch.max(outputs,1)
print("predicted"," ".join([classes[predicted[j]] for j in range(4)]))
predicted cat ship ship ship
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images,labels = data
outputs = net(images)
_,predicted = torch.max(outputs.data,1)
total += labels.size(0) # 等价于labels.size()[0]
correct+= (predicted==labels).sum().item()
print("acc:{}%%".format(100*correct/total))
acc:56.96%%
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
cpu
net.to(device)
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)

DataLoading And Processing

from __future__ import print_function,division
import os
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,utils
import warnings
from skimage import io,transform
warnings.filterwarnings("ignore")
plt.ion()
landmarks_frame = pd.read_csv("data/faces/face_landmarks.csv") # name x y x y ...
#print(landmarks_frame.columns.tolist())
n = 65 # 第65个样本
img_name = landmarks_frame.iloc[n,0]# 第65个样本的文件名
#print(img_name)
#print(landmarks_frame.iloc[n,1:])
landmarks = landmarks_frame.iloc[n,1:].as_matrix()# 第65个样本的样本值向量
#如果不加上as_matrix的结果就是feature name + feature val,加了之后只有feature val
#print(landmarks)
landmarks = landmarks.astype('float').reshape(-1,2) # 两个一组,组成两列的矩阵
def show_landmarks(image,landmarks):
plt.imshow(image)
plt.scatter(landmarks[:,0],landmarks[:,1],s=10,marker='.',c='r')
#plt.pause(0.001) # python 窗口用得着
plt.figure()
show_landmarks(io.imread(os.path.join("data/faces/",img_name)),landmarks)

# torch.utils.data.Dataset 是一个抽象类,我们的dataset需要继承这个类,才能对其进行操作
class FaceLandmarksDataset(Dataset):
def __init__(self,csv_file,root_dir,transform=None):
self.landmarks_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self,idx):
img_name = os.path.join(
self.root_dir,
self.landmarks_frame.iloc[idx,0]
)
image = io.imread(img_name)
landmarks = self.landmarks_frame.iloc[idx,1:].as_matrix()
landmarks = landmarks.astype('float').reshape([-1,2])
sample = {"image":image,"landmarks":landmarks}
if self.transform:
sample = self.transform(sample)
return sample
face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',root_dir='data/faces/')
fig = plt.figure()
for i in range(len(face_dataset)):
sample = face_dataset[i]
print(i,sample['image'].shape,sample['landmarks'].shape)
ax = plt.subplot(1,4,i+1)
#plt.tight_layout()
ax.set_title("sample #{}".format(i))
ax.axis("off")
show_landmarks(**sample) #**为python 拆包,将dict拆解为x=a,y=b的格式
if i==3:
plt.show()
break
0 (324, 215, 3) (68, 2)
1 (500, 333, 3) (68, 2)
2 (250, 258, 3) (68, 2)
3 (434, 290, 3) (68, 2)

class Rescale():
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple)) # 必须是int或tuple类型,否则报错,要习惯用assert isinstance
self.output_size = output_size
def __call__(self,sample): # 这个类的对象是一个函数,所以定义call
image,landmarks = sample['image'],sample['landmarks']
h,w = image.shape[:2]
if isinstance(self.output_size,int): # 如果只输入了一个值,则以较短边为基准保持长宽比率不变变换
if h>w:
new_h,new_w = self.output_size*h/w,self.output_size
else:
new_h,new_w = self.output_size,self.output_size*w/h
else: #给定一个size那就直接变成这个size
new_h,new_w = output_size
new_h,new_w = int(new_h),int(new_w)
img = transform.resize(image,(new_h,new_w)) # 进行resize操作,调用的是skimage的resize,提供(h,w),跟opencv相反
landmarks = landmarks * [new_w/w,new_h/h]# 相应的,landmark也要做转换
return {"image":img,"landmarks":landmarks} # 返回dict
class RandomCrop():
def __init__(self,output_size):
assert isinstance(output_size,(int,tuple))
if isinstance(output_size,int):
self.output_size = (output_size,output_size)
else:
assert len(output_size) ==2
self.output_size = output_size
def __call__(self,sample):
image,landmarks = sample['image'],sample['landmarks']
h,w = image.shape[:2]# 原图宽高
new_h,new_w = self.output_size # 裁剪的宽高
top = np.random.randint(0,h-new_h) # 裁剪输出图像最上端
left = np.random.randint(0,w-new_w) # 最左端,保证取的时候不越界
image = image[top:top+new_h,left:left+new_w] # 随机裁剪
landmarks = landmarks - [left,top] # 这里landmarks同样也需要做变换,之所以减去[left,top]是因为存储的是x,y对应的轴是w轴和h轴
return {"image":image,"landmarks":landmarks}
class ToTensor():
def __call__(self,sample):
image,landmarks = sample['image'],sample['landmarks']
image = image.transpose((2,0,1)) # transpose实质是reshape
# skimage的shape [h,w,c]
# torch的shape [c,h,w]
return {"image":torch.from_numpy(image),"landmarks":torch.from_numpy(landmarks)}
scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),RandomCrop(224)]) # 组合变换
fig = plt.figure()
sample = face_dataset[65]
for i,tsfrm in enumerate([scale,crop,composed]): # 三种变换
transformed_sample = tsfrm(sample) # 应用其中之一
ax = plt.subplot(1,3,i+1)
plt.tight_layout()
show_landmarks(**transformed_sample)
plt.show()

transformed_dataset = FaceLandmarksDataset(csv_file = 'data/faces/face_landmarks.csv',
root_dir="data/faces/",
transform=transforms.Compose(
[
Rescale(256),
RandomCrop(224),
ToTensor()
])
)
for i in range(len(transformed_dataset)):
sample = transformed_dataset[i]
print(i,sample['image'].size(),sample['landmarks'].size())
if i==3:
break
0 torch.Size([3, 224, 224]) torch.Size([68, 2])
1 torch.Size([3, 224, 224]) torch.Size([68, 2])
2 torch.Size([3, 224, 224]) torch.Size([68, 2])
3 torch.Size([3, 224, 224]) torch.Size([68, 2])
dataloader = DataLoader(transformed_dataset,batch_size=4,shuffle=True,num_workers=4) # 调用dataloader
def show_landmarks_batch(sample_batched):
images_batch,landmarks_batch = sample_batched['image'],sample_batched['landmarks']
batch_size = len(images_batch)
im_size = images_batch.size(2) #这里的size是shape
grid = utils.make_grid(images_batch) # 多张图变成一张图
plt.imshow(grid.numpy().transpose(1,2,0)) # reshape到能用plt显示
for i in range(batch_size):
# 第i张图片的所有点的x,所有点的y,后面 + i*im_size是由于所有图像水平显示,所以需要水平有个偏移
# 转numpy是因为torch类型的数据没办法scatter
plt.scatter(landmarks_batch[i,:,0].numpy() + i*im_size,
landmarks_batch[i,:,1].numpy(),
s=10,marker='.',c='r')
plt.title("batch from dataloader")
for i_batch,sample_batched in enumerate(dataloader):
if i_batch ==3:
plt.figure()
show_landmarks_batch(sample_batched)
plt.axis("off") # 关闭坐标系
plt.ioff()
plt.show()
break
<built-in method size of Tensor object at 0x7f273f3bad38>

[pytorch] 官网教程+注释的更多相关文章

  1. 训练DCGAN(pytorch官网版本)

    将pytorch官网的python代码当下来,然后下载好celeba数据集(百度网盘),在代码旁新建celeba文件夹,将解压后的img_align_celeba文件夹放进去,就可以运行代码了. 输出 ...

  2. Unity 官网教程 -- Multiplayer Networking

    教程网址:https://unity3d.com/cn/learn/tutorials/topics/multiplayer-networking/introduction-simple-multip ...

  3. MongoDB 官网教程 下载 安装

    官网:https://www.mongodb.com/ Doc:https://docs.mongodb.com/ Manual:https://docs.mongodb.com/manual/ 安装 ...

  4. ECharts概念学习系列之ECharts官网教程之在 webpack 中使用 ECharts(图文详解)

    不多说,直接上干货! 官网 http://echarts.baidu.com/tutorial.html#%E5%9C%A8%20webpack%20%E4%B8%AD%E4%BD%BF%E7%94% ...

  5. ECharts概念学习系列之ECharts官网教程之自定义构建 ECharts(图文详解)

    不多说,直接上干货! 官网 http://echarts.baidu.com/tutorial.html#%E8%87%AA%E5%AE%9A%E4%B9%89%E6%9E%84%E5%BB%BA%2 ...

  6. KnockoutJs官网教程学习(一)

    这一教程中你将会体验到一些用knockout.js和Model-View-ViewModel(MVVM)模式去创建一个Web UI的基础方式. 将学会如何用views(视图)和declarative ...

  7. scrapy1_官网教程

    https://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/tutorial.html 本篇文章主要介绍如何使用编程的方式运行Scrapy爬虫. 在开始本文之 ...

  8. Unreal Engine 4官网教程

    编辑器纵览 https://www.unrealengine.com/zh-CN/blog/editor-overview 虚幻编辑器UI布局概述 https://www.unrealengine.c ...

  9. Postman 官网教程,重点内容,翻译笔记,

    json格式的提交数据需要添加:Content-Type :application/x-www-form-urlencoded,否则会导致请求失败 1. 创建 + 测试: 创建和发送任何的HTTP请求 ...

随机推荐

  1. vector 中需要注意的东西!

    vector的erase方法注意点!!! C++11是这样的: iterator erase (const_iterator position); iterator erase (const_iter ...

  2. Linux 文件锁flock 实现两个进程相互监听存活状态

    表头文件  #include<sys/file.h> 定义函数  int flock(int fd,int operation); 函数说明  flock()会依参数operation所指 ...

  3. RTT学习之BSP

    ---恢复内容开始--- 一 根据相近型号的demo BSP进行修改制作自己的BSP https://github.com/RT-Thread/rt-thread/blob/master/bsp/st ...

  4. RTT之ENV

    一 先安装工具git:在CMD命令行中运行git命令检验git环境变量安装成功 二 下载env工具:然后解压,打开对应的exe然后右击-setting-intergration-registor这样后 ...

  5. [转] javascript另类方法高效实现htmlencode()与htmldecode()函数

    本文转自:http://blog.csdn.net/cuixiping/article/details/7846806 最常见的做法是采用正则表达式替换的方法,将特殊字符如 < > &am ...

  6. Qt 学习(4)

    Qt UI 文件机制 使用 Qt 设计界面程序时,若界面是静态的,可以借助 Qt Designer 进行所见即所得的界面设计.设计好界面后,在界面类中对 ui 对象进行操作非常方便. QtCreato ...

  7. Java Executors小结

    一 Executors提供了一系列工厂方法用于创先线程池ThreadPoolExecutor线程池的具体实现类,一般用的各种线程池都是基于这个类实现的 返回的线程池都实现了ExecutorServic ...

  8. ios 开发常用函数

    rand() ----随机数 abs() / labs() ----整数绝对值 fabs() / fabsf() / fabsl() ----浮点数绝对值 floor() / floorf() / f ...

  9. position 的属性值

    理论上来说,全部 position 的取值有8个 包括:position:static | relative | absolute | fixed | sticky |  initial | inhe ...

  10. 浏览器警告:provisional headers are shown

    做项目的时候遇到一个问题 后台JAVA,每次发送的都有一次拦截,去转发到登录页面的url 有一个请求是https的,被拦截后显示发生了错误,浏览器警告:provisional headers are ...