BZOJ3456 城市规划 【分治NTT】
题目链接
题解
据说这题是多项式求逆
我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\)
设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量
考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{{n \choose 2}}\)的,考虑用总数减去不连通的
既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子:
\]
展开组合数变形得:
\]
分治NTT即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
#define res register
using namespace std;
const int maxn = 500000,maxm = 100005,INF = 1000000000,P = 1004535809;
const int G = 3;
int N,f[maxn],fac[maxn],fv[maxn],inv[maxn],C2[maxn];
int A[maxn],B[maxn],R[maxn],w[2][maxn],L,n,m;
inline int qpow(int a,LL b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void NTT(int* a,int f){
for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (res int i = 1; i < n; i <<= 1){
int gn = w[f][i];
for (res int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2);
for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
void solve(int l,int r){
if (l == r){
f[l] = ((C2[l] - 1ll * fac[l - 1] * f[l] % P) % P + P) % P;
return;
}
int mid = l + r >> 1,t;
solve(l,mid);
m = (mid - l) + (r - l); L = 0;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = 0; i < n; i++) A[i] = B[i] = 0;
t = mid - l + 1;
for (int i = 0; i < t; i++)
A[i] = 1ll * f[l + i] * fv[l + i - 1] % P;
t = r - l;
B[0] = 0; for (int i = 1; i <= t; i++)
B[i] = 1ll * C2[i] * fv[i] % P;
NTT(A,1); NTT(B,1);
for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
NTT(A,0);
for (int i = mid + 1; i <= r; i++){
f[i] = (f[i] + A[i - l]) % P;
}
solve(mid + 1,r);
}
int main(){
scanf("%d",&N);
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
for (res int i = 2; i <= N; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
for (res int i = 1; i <= N; i++){
C2[i] = qpow(2,1ll * i * (i - 1) / 2);
}
for (res int i = 1; i < maxn; i <<= 1){
w[1][i] = qpow(G,(P - 1) / (i << 1));
w[0][i] = qpow(G,(-(P - 1) / (i << 1) % (P - 1) + (P - 1)) % (P - 1));
}
solve(1,N);
printf("%d\n",f[N]);
return 0;
}
BZOJ3456 城市规划 【分治NTT】的更多相关文章
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- BZOJ3456 城市规划(多项式求逆)
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...
- BZOJ3456 城市规划 【多项式求逆】
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...
- BZOJ3456: 城市规划
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
- 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...
随机推荐
- lintcode_111_爬楼梯
爬楼梯 描述 笔记 数据 评测 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 您在真实的面试中是否遇到过这个题? Yes 哪家公司问你的 ...
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- LVS基于DR模式搭建负载均衡群集
LVS -DR模式集群架构原理图
- CentOS yum命令报错 Error: File /var/cache/yum/i386/6/epel/metalink.xml does not exist
最近在虚拟机上执行yum命令一直报错:Could not parse metalink https://mirrors.fedoraproject.org/metalink?repo=epel-7&a ...
- html5的canvas绘制线条,moveTo和lineTo详解
今天在看html5,里面新增的属性有一个canvas,它相当于一个画布你可以用js在里面画你想要的效果!我在w3c的手册里面看到用moveTo和lineTo绘制线条讲的不是很清楚,尤其是moveTo和 ...
- java多线程批量读取文件( 八)--读写分离
package com.net.thread.future; import java.io.BufferedReader; import java.io.BufferedWriter; import ...
- decltype和新的返回值语法
新的返回值语法 让我们讲一下新的返回值语法,这个语法还能看到auto的另一个用处.在以前版本的C和C++中,返回值的类型必须写在函数的前面: int multiply(int x, int y) 在C ...
- 15.5,centos下redis安全相关
博文背景: 由于发现众多同学,在使用云服务器时,安装的redis3.0+版本都关闭了protected-mode,因而都遭遇了挖矿病毒的攻击,使得服务器99%的占用率!! 因此我们在使用redis ...
- Mybatis常用xml
工作中mybatis常用的xml代码 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE ma ...
- SLB 7层负载均衡“HUNG”问题追查
最近接到博客园的反馈,SLB 7层负载均衡的实例会不定期出现流量突跌的情况,突跌持续10s左右:同时,SLB自身监控也观察到了相同的现象: 针对该问题,我们进行了持续追查,最终定位到是nginx配置的 ...