题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv e^{A(x)}$。

题解:(by Weng_weijie)

泰勒展开:
$$
f(x)=f(x_0)+\dfrac{f'(x_0)(x-x_0)}{1!}+\dfrac{f''(x_0)(x-x_0)^2}{2!}+\dots
$$

牛顿迭代:

$$
解关于 F(x) 的方程使得 G(F(x))\equiv 0\pmod{x^n} \\
假设 G(F_0(x)) \equiv 0 \pmod{x^{\big\lceil\dfrac{n}{2}\big\rceil}} \\
对 G(F(x)) 在 F_0(x) 处泰勒展开得 \\
G(F(x)) \equiv G(F_0(x)) + \dfrac{G'(F_0(x))(F(x)-F_0(x))}{1!}+\dots \pmod{x^n} \\
又F(x)-F_0(x)\equiv 0\pmod{x^{\big\lceil\dfrac{n}{2}\big\rceil}} \\
(F(x)-F_0(x))^2\equiv 0\pmod{x^n} \\
\begin{align*}
\therefore G(F(x))&\equiv G(F_0(x)) + G'(F_0(x))(F(x)-F_0(x))\\
&\equiv 0\pmod{x^n} \\
\end{align*}\\
得到 F(x)=F_0(x)-\dfrac{G(F_0(x))}{G'(F_0(x))}
$$

多项式指数函数:

$$
设F(x)=e^{A(x)}, \ln F(x)=A(x), G(F(x))=\ln F(x)-A(x) \\
于是就是解 G(F(x))=0,代入牛顿迭代公式得:\\
F(x)=F_0(x)(1-\ln F_0(x)+A(x))
$$
卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 1 << 18 | 3
const int mod = 998244353, G = 3;
inline int pw(int base, int p) {
int ans = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) ans = 1ll * ans * base % mod;
return ans;
}
inline int Inv(int x) {return pw(x, mod - 2);}
namespace Poly {
int lim, ilim, s, rev[maxn];
int Wn[maxn + 1], inv[maxn], __invnum;
#define i __invnum
inline int getinv(int n) {
while (i < n) {i++; inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;}
return inv[n];
}
inline void INIT() {inv[i = 1] = 1;}
#undef i
inline void init(int n) {
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = getinv(lim);
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int t = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * t % mod;
} inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
inline void DER(int *A, int *B, int n) {
B[n - 1] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
}
inline void INT(int *A, int *B, int n) {
B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * inv[i] % mod;
}
int C[maxn];
void INV(int *A, int *B, int n) {
if (n == 1) {B[0] = Inv(A[0]); return ;}
INV(A, B, n + 1 >> 1);
init(n << 1);
for (int i = 0; i < n; i++) C[i] = A[i];
for (int i = n; i < lim; i++) C[i] = 0;
NTT(B, 1), NTT(C, 1);
for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
int D[maxn];
inline void LN(int *A, int *B, int n) {
DER(A, D, n), INV(A, B, n);
init(n << 1);
NTT(B, 1), NTT(D, 1);
for (int i = 0; i < lim; i++) D[i] = 1ll * D[i] * B[i] % mod;
NTT(D, 0);
INT(D, B, n);
for (int i = n; i < lim; i++) B[i] = 0;
}
int E[maxn], F[maxn];
void EXP(int *A, int *B, int n) {
if (n == 1) {B[0] = 1; return ;}
EXP(A, B, n + 1 >> 1);
for (int i = 0; i < n << 1; i++) E[i] = F[i] = 0;
LN(B, E, n);
for (int i = 0; i < n; i++) F[i] = A[i];
NTT(B, 1), NTT(E, 1), NTT(F, 1);
for (int i = 0; i < lim; i++) B[i] = (1ll + mod - E[i] + F[i]) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
}
int a[maxn], b[maxn], n;
int main() {
scanf("%d", &n);
Poly::INIT();
for (int i = 0; i < n; i++) scanf("%d", a + i);
Poly::EXP(a, b, n);
for (int i = 0; i < n; i++) printf("%d ", b[i]); puts("");
return 0;
}

  

[洛谷P4726]【模板】多项式指数函数的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  3. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  4. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  5. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  6. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

随机推荐

  1. 微信小程序之setData原理以及几点关于小程序的吐槽

    小程序不方便之处: 1: 想做个获取列表中每个item所在的对应滚动条的高度在哪里,或者元素本身的高度也不好获取,极其不方便,网上看的别人做的滚动条相关的,都是写死或者已知的item高度,目前没找到正 ...

  2. hdu_1573_X问题 (分段之中国剩余

    求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … ...

  3. avalon ms-repeat avalon1

    工作原因要用到avalon二次开发, 但是看了下以前的avalon版本是1,现在大多数都是2版本了吧,,所以很多文档不好找,但是大多数还是好用的 ms-repeat 循环当前赋值的, ms-repea ...

  4. vue数据绑定html

    html标签的纯文本显示/被当做html标签处理: 1)使用两个大括号时,假如字符串内容是html标签,那么不会被转义: 2)使用三个大括号时,字符串内的html标签会被直接转义 a.两个大括号: & ...

  5. nginx配置安装

    先安装pcrepcre作用是让Nginx支持Rewrite功能下载地址:https://sourceforge.net/projects/pcre/files/pcre/,选择最新版本进行下载下载之后 ...

  6. python简介,数据类型,input,if语句

      1. python的起源 python的创始人为吉多·范罗苏姆(龟叔Guido van Rossum),1989年的圣诞节期间,龟叔为了在阿姆斯特丹打发时间 决心开发一个新的脚本程序解释器,作为A ...

  7. 使用file_get_contents()和curl()抓取网络资源的效率对比

    使用file_get_contents()和curl()抓取网络资源的效率对比 在将小程序用户头像合成海报的时候,用到了抓取用户头像对应的网络资源,那么抓取方式有很多,比如 file_get_cont ...

  8. php-5.6.26源代码 - 扩展模块的种类,扩展模块的执行埋点

    模块种类(两种) 类型一:zend的模块:(类似zend_extension=test.so) 识别方法: php.ini中以zend_extension开头的配置,如zend_extension=t ...

  9. busybox编译 fatal error: curses.h: 没有那个文件或目录解决办法

    执行make menuconfig时出现如下错误@ubuntu:/home/dev/busybox-1.19.3# make menuconfig HOSTCC scripts/kconfig/lxd ...

  10. Pythond函数的参数使用操作注意事项

    定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了.对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解 ...