Tour(dp)
Tour(dp)
给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数。请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外每个点恰好经过一次,且路径总长度最短。两点间的长度为它们的欧几里得距离。
首先转换一下题意,可以看作找到两条不相交(除了起点终点)且总长最短的路径。这种题型有一个套路,就是让两个点再路径上模拟前进。如果用\(d(i, j)\)表示第一个人走到i,第二个人走到j,那么就不能设计出转移方程,因为不能保证两个人不会走到相同的点。没有定义好状态,导致转移困难。
所以需要发现这道题的性质。走回头路肯定是不优的。因此,我们可以把状态修改为:\(d(i, j)\)表示1~max(i, j)全部走过,且两个人的当前位置分别是i和j,走过的最短距离。不难由对称性发现\(d(i, j)=d(j, i)\),因此,在状态中规定i>j。状态转移的关系是:\(d(i, j)\ to\ d(i+1, j)\ or\ d(i+1, i)\)。(本来是转移到i,i+1的,但是我们规定i>j)。至此状态转移方程就很明了了。这样的状态设计是包括所有可能正确的情况的。具体实现和边界处理参见代码。
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1005, INF=1e9;
int n, x[maxn], y[maxn];
double f[maxn][maxn], ans;
inline int sqr(int x){ return x*x; }
inline double dis(int a, int b){
return hypot(x[a]-x[b], y[a]-y[b]);
}
int main(){
while (~scanf("%d", &n)){
for (int i=0; i<n; ++i)
scanf("%d%d", &x[i], &y[i]);
for (int i=0; i<n; ++i)
for(int j=0; j<n; ++j) f[i][j]=INF;
f[1][0]=0;
ans=INF;
for (int i=1; i<n; ++i){
for (int j=0; j<i; ++j) if (i!=n-1){
f[i+1][j]=min(f[i+1][j], f[i][j]+dis(i, i+1));
f[i+1][i]=min(f[i+1][i], f[i][j]+dis(j, i+1));
} else ans=min(ans, f[n-1][j]+dis(n-1, j));
}
printf("%.2lf\n", ans+dis(0, 1));
}
return 0;
}
Tour(dp)的更多相关文章
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- 最长公共子序列长度(dp)
/// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...
- Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)
Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...
随机推荐
- hdu 2050 折线分割平面(递推公式)
折线分割平面 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- [深入学习C#]C#实现多线程的方法:线程(Thread类)和线程池(ThreadPool)
简介 使用线程的主要原因:应用程序中一些操作需要消耗一定的时间,比如对文件.数据库.网络的访问等等,而我们不希望用户一直等待到操作结束,而是在此同时可以进行一些其他的操作. 这就可以使用线程来实现. ...
- jQuery Cloud Zoom:图片放大镜插件 破解插件
/* Cloud Zoom 10 Site License (CZ01-10). Version 3.1 rev 1312051822 */ (function(e) { function s(a) ...
- appium界面元素介绍
一.主窗口 主页面顶部从左到右依次是: AndroidSettings:android相关的设置 GeneralSettings:全局设置,设置appium相关的内容 DeveloperSetting ...
- PHP如何得到数组最后元素的key
1.array_keys(end($arr)) $array = array( 'one'=>1, 'two'=>2, 'three'=>3, 'four'=>4, ); $a ...
- python字符串替换之re.sub()
re.sub(pattern, repl, string, count=0, flags=0) pattern可以是一个字符串也可以是一个正则,用于匹配要替换的字符,如果不写,字符串不做修改.\1 代 ...
- git branch detached from jb4.2.2_1.0.0-ga
/*************************************************************************** * git branch detached f ...
- hdu Digital Square(广搜)
题目:给出n,求出最小的m,满足m^2 % 10^k = n,其中k=0,1,2 http://acm.hdu.edu.cn/showproblem.php?pid=4394 只要有一个x满足条件便 ...
- 非系统数据文件损坏,rman备份恢复
实验前提:已经做好备份. SQL> col file_name for a50select file_id,file_name from dba_data_files; FILE_ID FILE ...
- JUST第二界算法设计大赛题解
1.问题描述: 悠悠假期同叔叔一起去书店,他选中了六本书,每本书的单价(单位:元)分别为:3.1,1.7,2,5.3,0.9 和7.2.不巧的是,叔叔只带了十几块钱,为了让悠悠高兴,叔叔同意买书,但提 ...