Tour(dp)

给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数。请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外每个点恰好经过一次,且路径总长度最短。两点间的长度为它们的欧几里得距离。

首先转换一下题意,可以看作找到两条不相交(除了起点终点)且总长最短的路径。这种题型有一个套路,就是让两个点再路径上模拟前进。如果用\(d(i, j)\)表示第一个人走到i,第二个人走到j,那么就不能设计出转移方程,因为不能保证两个人不会走到相同的点。没有定义好状态,导致转移困难。

所以需要发现这道题的性质。走回头路肯定是不优的。因此,我们可以把状态修改为:\(d(i, j)\)表示1~max(i, j)全部走过,且两个人的当前位置分别是i和j,走过的最短距离。不难由对称性发现\(d(i, j)=d(j, i)\),因此,在状态中规定i>j。状态转移的关系是:\(d(i, j)\ to\ d(i+1, j)\ or\ d(i+1, i)\)。(本来是转移到i,i+1的,但是我们规定i>j)。至此状态转移方程就很明了了。这样的状态设计是包括所有可能正确的情况的。具体实现和边界处理参见代码。

#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1005, INF=1e9;
int n, x[maxn], y[maxn];
double f[maxn][maxn], ans; inline int sqr(int x){ return x*x; }
inline double dis(int a, int b){
return hypot(x[a]-x[b], y[a]-y[b]);
} int main(){
while (~scanf("%d", &n)){
for (int i=0; i<n; ++i)
scanf("%d%d", &x[i], &y[i]);
for (int i=0; i<n; ++i)
for(int j=0; j<n; ++j) f[i][j]=INF;
f[1][0]=0;
ans=INF;
for (int i=1; i<n; ++i){
for (int j=0; j<i; ++j) if (i!=n-1){
f[i+1][j]=min(f[i+1][j], f[i][j]+dis(i, i+1));
f[i+1][i]=min(f[i+1][i], f[i][j]+dis(j, i+1));
} else ans=min(ans, f[n-1][j]+dis(n-1, j));
}
printf("%.2lf\n", ans+dis(0, 1));
}
return 0;
}

Tour(dp)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  5. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  6. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  7. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  8. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

  9. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

随机推荐

  1. 初识JQuery(1)-选择器

    初识jquery 在学习jquery之前,就有看过一些相关的视频,才知道它是可以写很少的代码就可以完成很多事的.记得第一写轮播图的时候,首先就百度了篇轮播图的实现,当时还不知道自己百度的其实不是原生的 ...

  2. POJ 3349 Snowflake Snow Snowflakes (哈希表)

    题意:每片雪花有六瓣,给出n片雪花,六瓣花瓣的长度按顺时针或逆时针给出,判断其中有没有相同的雪花(六瓣花瓣的长度相同) 思路:如果直接遍历会超时,我试过.这里要用哈希表,哈希表的关键码key用六瓣花瓣 ...

  3. Redis安装以及基本操作命令

    Redis安装 cd redis-2.6.14make PREFIX=/usr/local/redis install 可能会出现的错误提示>>提示1:make[3]: gcc:命令未找到 ...

  4. tensorflow训练过程中内存溢出

    罪魁祸首是训练过程中给模型传值时的如下语句:

  5. 数据库的join查询

    假设我们有两张表. Table A 是左边的表. Table B 是右边的表. 其各有四条记录,其中有两条记录是相同的,如下所示: id name id name -- ---- -- ---- 1 ...

  6. 使用UIVisualEffectView创建毛玻璃效果

    UIVisuaEffectView :继承自UIView,可以看成是专门用于处理毛玻璃效果的视图,只要我们将这个特殊的View添加到其他视图(eg. ImageView )上面,被该UIVisuaEf ...

  7. redis源码笔记 - redis-cli.c

    这份代码是redis的client接口,其和server端的交互使用了deps目录下的hiredis c库,同时,在这部分代码中,应用了linenoise库完成类似history命令查询.自动补全等终 ...

  8. JUnit手记

    BeforeClass全局只执行一次初始化: Before,每个用例(测试方法)都会走一次: After/AfterClass以此类推

  9. saltstack集中化管理平台

    1.安装与启动 yum install salt-master -y 安装服务端 chkconfig salt-master on 自启动 service salt-master start 启动 y ...

  10. C++输入输出知识

    1.strtok将字符串中的单词用' '分割出来 #include<iostream> #include<cstdio> #include<cstdlib> #in ...