题目:https://www.luogu.org/problemnew/show/P4149

第一道点分治!

点分治大约是每次找重心,以重心为根做一遍树形dp;然后对于该根的每个孩子,递归下去。递归之前把该根的vis设成1,就相当于删掉该点这边的这部分。

对于这道题,要开一个1e6的桶,就不能给每个节点都开了;所以弄一个全局的,在递归给孩子之前都赋成初值就行了。

注意要弄完一个孩子再把它的点的值加到该根的数组里,作为“之前孩子的值”;而且递归之前赋初值memset也比较慢,开一个栈之类的就都好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+,M=1e6+,INF=0x3f3f3f3f;
int n,K,f[M],hd[N],xnt,to[N<<],w[N<<],nxt[N<<],sta[N][],top;
int siz[N],mn,dis[N],sl[N],ans=N;
bool vis[N];
void add(int x,int y,int z)
{
to[++xnt]=y;nxt[xnt]=hd[x];w[xnt]=z;hd[x]=xnt;
to[++xnt]=x;nxt[xnt]=hd[y];w[xnt]=z;hd[y]=xnt;
}
void getrt(int cr,int fa,int &rt,int s)
{
siz[cr]=;int mx=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]]&&v!=fa)
{
getrt(v,cr,rt,s);siz[cr]+=siz[v];mx=max(mx,siz[v]);
}
mx=max(mx,s-siz[cr]);
if(mx<mn)mn=mx,rt=cr;
}
void dfs(int cr,int fa)
{
siz[cr]=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]]&&v!=fa)
{
dis[v]=dis[cr]+w[i];sl[v]=sl[cr]+;
if(K>=dis[v])
{
ans=min(ans,sl[v]+f[K-dis[v]]);
sta[++top][]=dis[v];sta[top][]=sl[v];
}
dfs(v,cr);siz[cr]+=siz[v];
}
}
void solve(int cr)
{
vis[cr]=;int p0=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]])
{
dis[v]=w[i];sl[v]=;
if(K>=dis[v])
{
ans=min(ans,sl[v]+f[K-dis[v]]);
sta[++top][]=dis[v];sta[top][]=sl[v];
}
dfs(v,);
for(int i=p0;i<=top;i++)f[sta[i][]]=min(f[sta[i][]],sta[i][]);
p0=top+;
}
for(int i=;i<=top;i++)f[sta[i][]]=INF;top=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]])
{
mn=N;int rt;getrt(v,,rt,siz[v]);
solve(rt);
}
}
int main()
{
scanf("%d%d",&n,&K);int x,y,z;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);x++;y++;add(x,y,z);
}
memset(f,0x3f,sizeof f);f[]=;
mn=N;int rt;getrt(,,rt,n);solve(rt);
printf("%d\n",ans==N?-:ans);
return ;
}

洛谷 4149 [IOI2011]Race——点分治的更多相关文章

  1. 洛谷$P4149\ [IOI2011]\ Race$ 点分治

    正解:点分治 解题报告: 传送门$QwQ$ 昂先不考虑关于那个长度的限制考虑怎么做? 就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$ 然后现在考虑加入这个长度的限制?就考虑把这 ...

  2. 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)

    洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...

  3. 洛谷P4149 [IOI2011]Race(点分治)

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式:   第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...

  4. [洛谷P4149][IOI2011]Race

    题目大意:给一棵树,每条边有边权.求一条简单路径,权值和等于$K$,且边的数量最小. 题解:点分治,考虑到这是最小值,不满足可减性,于是点分中的更新答案的地方计算重复的部分要做更改,就用一个数组记录前 ...

  5. 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小

    P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...

  6. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  7. 洛谷SP22343 NORMA2 - Norma(分治,前缀和)

    洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...

  8. bzoj2599/luogu4149 [IOI2011]Race (点分治)

    点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...

  9. [IOI2011]Race 点分治

    [IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...

随机推荐

  1. MATLAB循环结构:while语句P69范数待编

    while语句的一般格式为: while 条件 循环体语句 end 从键盘输入若干个数,当输入0时结束输入,求这些数的平均值和它们的和. 程序如下: sum=; n=; x=input('输入一个数字 ...

  2. vue组件父子组件之间传递数据

    举个栗子: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  3. python脚本分析nginx访问日志

    日志格式如下: 223.74.135.248 [11/May/2017:11:19:47 +0800] "POST /login/getValidateCode HTTP/1.1" ...

  4. Residual (numerical analysis)

    In many cases, the smallness of the residual means that the approximation is close to the solution, ...

  5. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks

    Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks S. Chen, C. F. N. Cow ...

  6. linux c编程:信号(三) sigprocmask和sigpending函数

    信号源为目标进程产生了一个信号,然后由内核来决定是否要将该信号传递给目标进程.从信号产生到传递给目标进程的流程图如下图所示: 进程可以阻塞信号的传递.当信号源为目标进程产生了一个信号之后,内核会执行依 ...

  7. Ubuntu 13.04 可以使用的源

    以下为收集的Ubuntu 13.04 可以使用的源 #中科大源deb http://mirrors.ustc.edu.cn/ubuntu/ saucy main restricted universe ...

  8. (转)Javascript模块化编程(二):AMD规范

    这个系列的第一部分介绍了Javascript模块的基本写法,今天介绍如何规范地使用模块. (接上文) 七.模块的规范 先想一想,为什么模块很重要? 因为有了模块,我们就可以更方便地使用别人的代码,想要 ...

  9. ubuntu安装pip和python

    安装pip2sudo apt-get install pip 这样安装的是pip2不支持Python3.x,可以使用如下命令安装pip3 sudo apt-get install python3-pi ...

  10. Linux基础系列:常用命令(6)_nfs服务与nginx服务

    NFS介绍: NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布.功能是通过网络让不同的机器.不同的操作系统 ...