题目:https://www.luogu.org/problemnew/show/P4149

第一道点分治!

点分治大约是每次找重心,以重心为根做一遍树形dp;然后对于该根的每个孩子,递归下去。递归之前把该根的vis设成1,就相当于删掉该点这边的这部分。

对于这道题,要开一个1e6的桶,就不能给每个节点都开了;所以弄一个全局的,在递归给孩子之前都赋成初值就行了。

注意要弄完一个孩子再把它的点的值加到该根的数组里,作为“之前孩子的值”;而且递归之前赋初值memset也比较慢,开一个栈之类的就都好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+,M=1e6+,INF=0x3f3f3f3f;
int n,K,f[M],hd[N],xnt,to[N<<],w[N<<],nxt[N<<],sta[N][],top;
int siz[N],mn,dis[N],sl[N],ans=N;
bool vis[N];
void add(int x,int y,int z)
{
to[++xnt]=y;nxt[xnt]=hd[x];w[xnt]=z;hd[x]=xnt;
to[++xnt]=x;nxt[xnt]=hd[y];w[xnt]=z;hd[y]=xnt;
}
void getrt(int cr,int fa,int &rt,int s)
{
siz[cr]=;int mx=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]]&&v!=fa)
{
getrt(v,cr,rt,s);siz[cr]+=siz[v];mx=max(mx,siz[v]);
}
mx=max(mx,s-siz[cr]);
if(mx<mn)mn=mx,rt=cr;
}
void dfs(int cr,int fa)
{
siz[cr]=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]]&&v!=fa)
{
dis[v]=dis[cr]+w[i];sl[v]=sl[cr]+;
if(K>=dis[v])
{
ans=min(ans,sl[v]+f[K-dis[v]]);
sta[++top][]=dis[v];sta[top][]=sl[v];
}
dfs(v,cr);siz[cr]+=siz[v];
}
}
void solve(int cr)
{
vis[cr]=;int p0=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]])
{
dis[v]=w[i];sl[v]=;
if(K>=dis[v])
{
ans=min(ans,sl[v]+f[K-dis[v]]);
sta[++top][]=dis[v];sta[top][]=sl[v];
}
dfs(v,);
for(int i=p0;i<=top;i++)f[sta[i][]]=min(f[sta[i][]],sta[i][]);
p0=top+;
}
for(int i=;i<=top;i++)f[sta[i][]]=INF;top=;
for(int i=hd[cr],v;i;i=nxt[i]) if(!vis[v=to[i]])
{
mn=N;int rt;getrt(v,,rt,siz[v]);
solve(rt);
}
}
int main()
{
scanf("%d%d",&n,&K);int x,y,z;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);x++;y++;add(x,y,z);
}
memset(f,0x3f,sizeof f);f[]=;
mn=N;int rt;getrt(,,rt,n);solve(rt);
printf("%d\n",ans==N?-:ans);
return ;
}

洛谷 4149 [IOI2011]Race——点分治的更多相关文章

  1. 洛谷$P4149\ [IOI2011]\ Race$ 点分治

    正解:点分治 解题报告: 传送门$QwQ$ 昂先不考虑关于那个长度的限制考虑怎么做? 就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$ 然后现在考虑加入这个长度的限制?就考虑把这 ...

  2. 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)

    洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...

  3. 洛谷P4149 [IOI2011]Race(点分治)

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式:   第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...

  4. [洛谷P4149][IOI2011]Race

    题目大意:给一棵树,每条边有边权.求一条简单路径,权值和等于$K$,且边的数量最小. 题解:点分治,考虑到这是最小值,不满足可减性,于是点分中的更新答案的地方计算重复的部分要做更改,就用一个数组记录前 ...

  5. 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小

    P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...

  6. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  7. 洛谷SP22343 NORMA2 - Norma(分治,前缀和)

    洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...

  8. bzoj2599/luogu4149 [IOI2011]Race (点分治)

    点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...

  9. [IOI2011]Race 点分治

    [IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...

随机推荐

  1. K-Piggy-Bank

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  2. ArcGIS API for js InfoWindow

    说明:有关该示例中怎么引用部署在iis上的离线arcgis api请参考我前面的博文 1.运行效果 2.HTML代码 <!DOCTYPE html> <html> <he ...

  3. Chrome Native Messaging 与本地程序之间的通信

    最近项目上出现了web打印不稳定的问题,师父决定web调用本地打印程序,在查阅了相关资料和加了几个相关群咨询后得知新版的chrome不支持NNAPI了,最好用Native Messaging来处理,经 ...

  4. 【译】Stackoverflow:Java Servlet 工作原理问答

    导读 本文来自stackoverflow的问答,讨论了Java Servlet的工作机制,如何进行实例化.共享变量和多线程处理. 问题:Servlet 是如何工作的?Servlet 如何实例化.共享变 ...

  5. 洛谷2704 [NOI2001]炮兵阵地

    题目戳这里 Solution 状压DP很好的入门题,用熟练位运算貌似也没那么难. 首先分析一下题目: 看见n=100,m=10,立马就想到了状压,看起来也像DP,所以我们还是采用行号为阶段的状压DP. ...

  6. php7下 xhprof安装与使用

    需要测试下 代码的性能,使用了 xhprof + xhgui 1. 下载xhprof, 这里下载吧 :https://github.com/longxinH/xhprof.git 2, 安装 cd x ...

  7. Python 面试题(上)

    Python语言特性 1 Python的函数参数传递 看两个例子: a = 1 deffun(a): a = 2 fun(a) printa # 1 a = [] deffun(a): a.appen ...

  8. 阿里云CentOS7安装Docker

    买了阿里云主机,由于学生有优惠,玩起来确实爽. 系统版本: [root@lxd ~]# cat /etc/redhat-release CentOS Linux release 7.0.1406 (C ...

  9. Data Structure Binary Tree: Boundary Traversal of binary tree

    http://www.geeksforgeeks.org/boundary-traversal-of-binary-tree/ #include <iostream> #include & ...

  10. P4103 [HEOI2014]大工程

    题目 P4103 [HEOI2014]大工程 化简题目:在树上选定\(k\)个点,求两两路径和,最大的一组路径,最小的一组路径 做法 关键点不多,建个虚树跑一边就好了 \(sum_i\)为\(i\)子 ...