\(\color{#0066ff}{ 题目描述 }\)

对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系。

星际空间站的Samuel II巨型计算机经过长期探测,已经锁定了Samuel星系中许多星球的空间坐标,并对这些星球从1开始编号1、2、3……。

一些先遣飞船已经出发,在星球之间开辟探险航线。

探险航线是双向的,例如从1号星球到3号星球开辟探险航线,那么从3号星球到1号星球也可以使用这条航线。

例如下图所示:

在5个星球之间,有5条探险航线。

A、B两星球之间,如果某条航线不存在,就无法从A星球抵达B星球,我们则称这条航线为关键航线。

显然上图中,1号与5号星球之间的关键航线有1条:即为4-5航线。

然而,在宇宙中一些未知的磁暴和行星的冲撞,使得已有的某些航线被破坏,随着越来越多的航线被破坏,探险飞船又不能及时回复这些航线,可见两个星球之间的关键航线会越来越多。

假设在上图中,航线4-2(从4号星球到2号星球)被破坏。此时,1号与5号星球之间的关键航线就有3条:1-3,3-4,4-5。

小联的任务是,不断关注航线被破坏的情况,并随时给出两个星球之间的关键航线数目。现在请你帮助完成。

\(\color{#0066ff}{输入格式}\)

第一行有两个整数N,M。表示有N个星球(1< N < 30000),初始时已经有M条航线(1 < M < 100000)。随后有M行,每行有两个不相同的整数A、B表示在星球A与B之间存在一条航线。接下来每行有三个整数C、A、B。C为1表示询问当前星球A和星球B之间有多少条关键航线;C为0表示在星球A和星球B之间的航线被破坏,当后面再遇到C为1的情况时,表示询问航线被破坏后,关键路径的情况,且航线破坏后不可恢复; C为-1表示输入文件结束,这时该行没有A,B的值。被破坏的航线数目与询问的次数总和不超过40000。

\(\color{#0066ff}{输出格式}\)

对每个C为1的询问,输出一行一个整数表示关键航线数目。

\(\color{#0066ff}{输入样例}\)

5 5
1 2
1 3
3 4
4 5
4 2
1 1 5
0 4 2
1 5 1
-1

\(\color{#0066ff}{输出样例}\)

1
3

\(\color{#0066ff}{数据范围与提示}\)

我们保证无论航线如何被破坏,任意时刻任意两个星球都能够相互到达。在整个数据中,任意两个星球之间最多只可能存在一条直接的航线。

\(\color{#0066ff}{ 题解 }\)

正序删边我们不好维护这种东西,考虑离线倒序加边

一旦出现环,我们就暴力缩点,用ufs来维护所属的双连通分量

显然树链上每个点代表一个双连通分量,那么答案就是点数- 1

在连边的时候,如果不成环,直接连即可,如果成环,暴力dfs把所有点的ufs的父亲设为当前点

那它们原来的父亲不就无效了吗,所以access的时候,把父亲设为ufs的父亲即可

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 3e4 + 9;
const int maxm = 1e5 + 9;
struct node {
node *ch[2], *fa;
int siz, rev;
node(int siz = 1, int rev = 0): siz(siz), rev(rev) { ch[0] = ch[1] = fa = NULL; }
void trn() { std::swap(ch[0], ch[1]), rev ^= 1; }
void upd() {
siz = 1;
if(ch[0]) siz += ch[0]->siz;
if(ch[1]) siz += ch[1]->siz;
}
void dwn() {
if(!rev) return;
if(ch[0]) ch[0]->trn();
if(ch[1]) ch[1]->trn();
rev = 0;
}
bool ntr() { return fa && (fa->ch[0] == this || fa->ch[1] == this); }
bool isr() { return fa->ch[1] == this; }
}pool[maxn];
int fa[maxn];
void rot(node *x) {
node *y = x->fa, *z = y->fa;
bool k = x->isr(); node *w = x->ch[!k];
if(y->ntr()) z->ch[y->isr()] = x;
(x->ch[!k] = y)->ch[k] = w;
(y->fa = x)->fa = z;
if(w) w->fa = y;
y->upd(), x->upd();
}
void splay(node *o) {
static node *st[maxn];
int top;
st[top = 1] = o;
while(st[top]->ntr()) st[top + 1] = st[top]->fa, top++;
while(top) st[top--]->dwn();
while(o->ntr()) {
if(o->fa->ntr()) rot(o->isr() ^ o->fa->isr()? o : o->fa);
rot(o);
}
}
int findset(int x) { return x == fa[x]? fa[x] : fa[x] = findset(fa[x]); }
void access(node *x) {
for(node *y = NULL; x;) {
splay(x), x->ch[1] = y, x->upd();
y = x;
if(x->fa) x = x->fa = pool + findset(x->fa - pool);
else x = x->fa;
}
}
void makeroot(node *o) { access(o), splay(o), o->trn(); }
node *findroot(node *o) {
access(o), splay(o);
while(o->dwn(), o->ch[0]) o = o->ch[0];
return splay(o), o;
}
void del(node *o, int f) { if(o) fa[o - pool] = f, del(o->ch[0], f), del(o->ch[1], f); }
void out();
void link(int l, int r) {
if(l == r) return;
node *x = pool + l, *y = pool + r;
makeroot(x);
if(findroot(y) != x) return (void)(x->fa = y);
del(x->ch[1], x - pool);
if(x->ch[1]) x->ch[1] = NULL;
x->upd();
}
int query(int l, int r) {
node *x = pool + l, *y = pool + r;
makeroot(x), access(y), splay(y);
return y->siz - 1;
}
using std::pair;
using std::make_pair;
pair<int, int> e[maxm], q[maxm];
std::map<pair<int, int>, int> mp;
bool vis[maxm];
int id[maxm], n, m, ans[maxn];
int main() {
n = in(), m = in();
int x, y;
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i = 1; i <= m; i++) {
x = in(), y = in();
if(x > y) std::swap(x, y);
mp[e[i] = make_pair(x, y)] = i;
}
int num = 0;
while(~(id[++num] = in())) {
x = in(), y = in();
if(x > y) std::swap(x, y);
q[num] = make_pair(x, y);
if(id[num] == 0) vis[mp[q[num]]] = true;
}
for(int i = 1; i <= m; i++) if(!vis[i]) link(findset(e[i].first), findset(e[i].second));
int v = 0;
for(int i = num - 1; i >= 1; i--) {
x = findset(q[i].first), y = findset(q[i].second);
if(id[i] == 1) ans[++v] = query(x, y);
else link(x, y);
}
for(int i = v; i >= 1; i--) printf("%d\n", ans[i]);
return 0;
}

P2542 [AHOI2005]航线规划 LCT维护双连通分量的更多相关文章

  1. [AHOI2005]航线规划——LCT维护边双联通分量

    因为只能支持加入一个边维护边双,所以时光倒流 维护好边双,每次就是提取出(x,y)的链,答案就是链长度-1 具体维护边双的话, void access(int x){ for(reg y=0;x;y= ...

  2. 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)

    洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...

  3. 洛谷 P2542 [AHOI2005]航线规划 解题报告

    P2542 [AHOI2005]航线规划 题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel星系 ...

  4. BZOJ 1969 航线规划 - LCT 维护边双联通分量

    Solution 实际上就是查询 $u$ 到 $v$ 路径上 边双的个数 $ -1$. 并且题目仅有删边, 那么就离线倒序添边. 维护 边双 略有不同: 首先需要一个并查集, 记录 边双内的点. 在 ...

  5. 洛谷 P2542 [AHOI2005]航线规划(Link-cut-tree)

    题面 洛谷 bzoj 题解 离线处理+LCT 有点像星球大战 我们可以倒着做,断边变成连边 我们可以把边变成一个点 连边时,如果两个点本身不联通,就\(val\)赋为\(1\),并连接这条边 如果,两 ...

  6. 洛谷 P2542 [AHOI2005]航线规划 树链剖分_线段树_时光倒流_离线

    Code: #include <map> #include <cstdio> #include <algorithm> #include <cstring&g ...

  7. AHOI2005航线规划 bzoj1969(LCT缩点)

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

  8. P2542 【[AHOI2005]航线规划】

    P2542 [[AHOI2005]航线规划] 一个无向图,m个操作 删去一条边 给定两个点,求有多少边使得如果这条边不存在,给定的两个点不连通 一般这种删边的题目,考虑逆序加边处理 在删完的图中,任意 ...

  9. BZOJ1969: [Ahoi2005]LANE 航线规划(LCT)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 587  Solved: 259[Submit][Status][Discuss] Description ...

随机推荐

  1. List<T> JIT 分配策略

    参考 http://www.cnblogs.com/brookshi/p/5353021.html defaultCapacity意思是new List<T>时默认大小是4. _items ...

  2. Java堆初始大小的建议值

    摘自:<Java Performance>第三章 Initial Heap Space Size Configuration This section describes how to u ...

  3. SpringMVC + AJAX 实现多文件异步上传

    转自:https://www.jianshu.com/p/f3987f0f471f 今天,我就这个问题来写一篇如何用 SpringMVC + AJAX 实现的多文件异步上传功能.基本的代码还是沿用上篇 ...

  4. js正则基础总结和工作中常用验证规则

    知识是需要系统的.就像js正则用了那么多次,却还是浑浑噩噩,迫切需要来一次整理,那么来吧! 基本知识 元字符 \d 匹配数字等于[0-9] \w 匹配字母.数字.下划线.中文 \s 匹配任意空白字符 ...

  5. python的文件锁使用

    python的文件锁目前使用的是fcntl这个库,它实际上为 Unix上的ioctl,flock和fcntl 函数提供了一个接口. 1.fcntl库的简单使用 import fcntl import ...

  6. Codeforces 1137C Museums Tour (强连通分量, DP)

    题意和思路看这篇博客就行了:https://www.cnblogs.com/cjyyb/p/10507937.html 有个问题需要注意:对于每个scc,只需要考虑进入这个scc的时间即可,其实和从哪 ...

  7. 使用ServerSocket建立聊天服务器(一)

    -------------siwuxie095                             工程名:TestMyServerSocket 包名:com.siwuxie095.socket ...

  8. 32-回文字符串(dp)

    http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=37 回文字符串 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描 ...

  9. poj1769 Minimizing maximizer

    传送门 题目大意 给你m个机器,n个数,每个机器可以给n个数的某一段排序,求最少使用几个机器,保证可以把这个n个数排好序 分析 我们可以想到dpij表示考虑前i个机器让最大的数到达点j至少需要使用多少 ...

  10. hdu4283 You Are the One

    传送门 题目 The TV shows such as You Are the One has been very popular. In order to meet the need of boys ...