#!/usr/bin/python
#-*- coding: utf-8 -*- #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#Name : collMonitorDataToDB.py #
#Created : 2017/07/06 #
#Author : @ruiy #
#Version : 2.0 #
#Copyright : 2016 ~ 2017 ahwater.net Corporation.` #
#Description : collection monitor indicator data to DB. #
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# import pyodbc
import sys
import os
import commands
import datetime
import paramiko
import re
import ConfigParser
import codecs
import chardet
#import psutil #import sys
#reload(sys)
#sys.setdefaultencoding('utf8') #监控表字段主要:
# id,timestramp,location,ip,hostname,port,port_est_counts,cpu_use_ratio
# mem_total,mem_free,mem_use_ratio
# disk_drive_c_total,disk_drive_c_free,disk_drive_c_use_ratio
# send_flow,recv_flow,send_packets,recv_packets #
#内存
#总内存容量(单位-字节bytes): wmic memorychip get capacity
#剩余内存容量(单位-kbytes): wmic OS get FreePhysicalMemory #磁盘
#查看物理磁盘: wmic DISKDRIVE get deviceid,Caption,size,InterfaceType
#查看逻辑分区: wmic LOGICALDISK get name,Description,filesystem,size,freespace
#获取指定分区信息: fsutil volume diskfree c:
#获取磁盘分区total or fre 或用 wmic LOGICALDISK get name,Description,filesystem,size,freespace #cpu
#查看cpu核数: wmic cpu get name,addresswidth,processorid
#获取cpu实时使用率: wmic cpu get LoadPercentage #process
#process list: wmic process get Caption,KernelModeTime,UserModeTime #mystring.strip().replace(' ', '').replace('\n', '').replace('\t', '').replace('\r', '').strip() #网络流量信息 #database source read conf
dbconf=ConfigParser.SafeConfigParser()
#with codecs.open('../conf/config.properties','r',encoding='utf-8') as f:
# dbconf.readfp(f)
dbconf.read('../conf/config.properties') db_driver=dbconf.get('db','driver')
db_server=dbconf.get('db','server')
db_database=dbconf.get('db','database')
db_uid=dbconf.get('db','uid')
db_pwd=dbconf.get('db','pwd') #print type(db_server)
#print type(db_database)
#print type(db_uid)
#print type(db_pwd) #python conn sql server2008R2
#读取配置文件
"""
conn = pyodbc.connect(
driver='{sql server native client 10.0}';
server=%s;
database=%s;
uid=%s;
pwd=%s;
)
""" #debug
#conn = pyodbc.connect('driver={sql server native client 10.0};server=%s;database=%s;uid=%s;pwd=%s;'%(db_server,db_database,db_uid,db_pwd))
#conn_info = ('Driver{MySQL51};Server=%s;Port=%s;Database=%s;User=%s; Password=%s;Option=3;'%(host, port, database, user,password)) #conn1_info=('Driver={sql server native client 10.0};server=%s;database=%s;uid=%s;pwd=%s;'%('10.34.1.30','LogFeedback','sa','ahswyc'))
#print conn1_info
conn_info=('driver=%s;server=%s;database=%s;uid=%s;pwd=%s;'%(db_driver,db_server,db_database,db_uid,db_pwd))
#print conn_info
conn=pyodbc.connect(conn_info) #固定配置
#conn = pyodbc.connect('driver={sql server native client 10.0};server=10.34.1.30;database=LogFeedback;uid=sa;pwd=ahswyc;')
"""
conn = pyodbc.connect(
driver='{sql server native client 10.0}',
server='10.34.1.30',
database='LogFeedback',
uid='sa',
pwd='ahswyc'
)
""" cursor = conn.cursor() #参考调试,入库测试语句
#cursor.execute("insert into iisEstablishConnCounts(timestramp,iisHostIp,connCounts) values('2017/07/06:22:10','10.34.1.23',90)") #sql入库字段基于变量
#80端口连接数统计
#netstat -na -p tcp| findstr 80 | find /C "ESTABLISH" #cmd="netstat -na -p tcp| findstr 80 | find /C \"ESTABLISH\""
#(status,output) = commands.getstatusoutput("%s" % cmd) #python执行调用系统命令并将结果保存到变量
#注意在linux下用python执行系统命令并将结果保存到变量与windows不同如下语句
#cmd="netstat -na -p tcp| findstr 80 | find /C \"ESTABLISH\""
#(status,output) = commands.getstatusoutput("%s" % cmd) #获取监控时间戳
dt= datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
#print(dt)
dateTime =dt
#print("debug1: ",dateTime)
print("current dataTime: ",dateTime)
#获取本地的弃用,程序主要用于获取远程主机的监控数据 #调试暂时打开
#portCounts=os.popen("netstat -na -p tcp| findstr 80 | find /C \"ESTABLISH\"").read()
#print("debug2: ",portCounts) #人工配置数据
location=dbconf.get('const_18','location_18')
describe=dbconf.get('const_18','describe_18')
countport=dbconf.get('const_18','countport_18') #print(chardet.detect(location.encode('utf-8')))
#print type(location)
#op=('%s' % location).encode('gbk')
#print op
#localT=ur'省水文局'
#localT='水文局3tets1123'.decode('utf-8')
#localT=location.decode('utf-8').encode('gbk')
print location
localT=location
#localT="anhui shuiwen ju"
print("monitr location: ",localT)
#因为在被监控机部署ssh server,所以ip是同一个,都是被监控机器ip
ssh_ip=dbconf.get('ssh_18','ssh_ip_18')
mip=ssh_ip
print("monitor ip:",mip) mport=countport
print("port: ",mport) #paramiko日志
#logfiles=datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
#os.environ['logfiles'] = str(logfiles)
#paramiko.util.log_to_file(os.system(echo '../logs/$logfiles.txt'))
#paramiko.util.log_to_file("../logs/{logfiles}".txt) #远程监控数据获取
#paramiko ssh跨机建立
#transport = paramiko.Transport(('192.168.11.181',22))
tail_ip=ssh_ip.split('.')[3]
logfiles=datetime.datetime.now().strftime('%Y-%m-%d_%H_%M_%S')
paramiko.util.log_to_file('../logs/%s-%s.txt'% (logfiles,tail_ip)) """
transport = paramiko.Transport(('10.34.1.23', 22))
transport.connect(username='ahwater', password='Aa7788..')
ssh = paramiko.SSHClient()
ssh._transport = transport
"""
#ssh conn read conf
#ssh连接属性读取配置文件
#ssh_ip=dbconf.get('ssh_18','ssh_ip_18')
ssh_port=int(dbconf.get('ssh_18','ssh_port_18'))
ssh_username=dbconf.get('ssh_18','ssh_username_18')
ssh_password=dbconf.get('ssh_18','ssh_password_18')
#print ssh_password
transport = paramiko.Transport((ssh_ip, ssh_port))
transport.connect(username=ssh_username, password=ssh_password)
ssh = paramiko.SSHClient()
ssh._transport = transport #主机名
cmd01='hostname'
stdin, stdout, stderr = ssh.exec_command(cmd01)
#print(stdout.read())
data01=stdout.read().strip().replace(' ', '').replace('\t', '').replace('\r', '').strip()
print("monitor hostname: ",data01) #端口连接数统计
#在人工配置数据处填写的端口的端口establish port counts
cmd02='netstat -na'
stdin, stdout, stderr = ssh.exec_command(cmd02)
data02=stdout.read().count('')
#data02=stdout.read().count(mport)
print("port est counts: ",data02) #cpu使用率
cmd03='wmic cpu get LoadPercentage'
stdin, stdout, stderr = ssh.exec_command(cmd03)
#da03=stdout.read().strip('LoadPercentage').replace('\n', '').replace('\t', '').replace('\r', '').replace(' ','').strip()
#da03=stdout.read().strip('LoadPercentage').replace(' ','').replace('\n','').replace('\t', '').replace('\r', '')
da03=stdout.read().strip('LoadPercentage').replace('\n', '').replace('\t', '').replace('\r', '').replace(' ','').replace('\n','').strip()
#print(da03)
statis=0
counts=0
for i in da03:
#cpu物理核心统计
counts = counts + 1
statis = statis + int(i)
try:
#print(counts)
data03=round(float(statis)/counts/100,6)
#data003="'" +data03 +"'"
print("cpu use ratio: ",data03)
except:
pass #内存总量/Gb
"""
cmd04='wmic memorychip get capacity'
stdin,stdout,stderr = ssh.exec_command(cmd04)
da04=stdout.read().strip('Capacity').replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
data04=float(da04)/1024/1024/1024
print("mem total Gb: ",data04)
"""
cmd04='wmic memorychip get capacity'
stdin,stdout,stderr = ssh.exec_command(cmd04)
d4_1=stdout.read().strip('Capacity').replace(' ','').replace('\t','').replace('\r','').strip()
d4_2=(' '.join(filter(lambda x: x, d4_1.split(' '))))
d4_3=d4_2.split('\n') counts_4=0
for i in d4_3:
counts_4 = counts_4 + int(i) data04=float(counts_4)/1024/1024/1024
print("mem total Gb: ",data04) #内存剩余量/Gb
cmd05='wmic OS get FreePhysicalMemory'
stdin,stdout,stderr = ssh.exec_command(cmd05)
da05=stdout.read().strip('FreePhysicalMemory').replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
data05=round(float(da05)/1024/1024,4)
print("mem free Gb: ",data05) #内存使用率
data06=round(float((data04 - data05)) / data04,4)
print("mem use ratio: ",data06) #磁盘信息,根系统盘C:
#cmd07='fsutil volume diskfree c:'
cmd07='wmic LOGICALDISK get FreeSpace,Size'
#C盘总量
stdin,stdout,stderr = ssh.exec_command(cmd07)
#删除FreeSpace,Size字符
d7_1=stdout.read().strip().replace('FreeSpace','').replace('Size','')
#删除r-n
d7_2=d7_1.strip().replace('\r','').replace('\n','')
#替换多个' '为单个
d7_3=(' '.join(filter(lambda x: x, d7_2.split(' '))))
#转换str->list
disk_data=d7_3.split(' ') #获取C分区盘总量Gb,获取的数据默认单位是bytes
data07=round(float(disk_data[1])/1024/1024/1024,4)
print("C disk total Gb:",data07)
#获取C分区盘剩余量Gb
data08=round(float(disk_data[0])/1024/1024/1024,4)
print("C disk free Gb:",data08)
#C分区盘使用率
data09=round((data07 - data08) / data07,4)
print("C disk space use ratio: ",data09) #获取网络流量信息
cmd08='netstat -e'
stdin, stdout, stderr = ssh.exec_command(cmd08)
d8_1=stdout.read().strip().rstrip().lstrip().replace('\r','').replace('\n','')
d8_2=(' '.join(filter(lambda x: x, d8_1.split(' '))))
d8_3=d8_2.split(' ') #数据流默认bytes,把汉字字符剔除
net_data=re.sub('[^\u4e00-\u9fa5]','',d8_3[4])
#发送的流量累加总计Gb
data10=round(float(net_data)/1024/1024/1024,4)
print("send trafic flow Gb: ",data10)
#接收的流量累加总计
#net_data2=re.sub('[^\u4e00-\u9fa5]','',d8_3[3])
net_data2=d8_3[3]
data11=round(float(net_data2)/1024/1024/1024,4)
print("recv trafic flow Gb: ",data11) #发送的数据包累加总数Tcp/ip层
#发送的数据包累加总数
data12=int(re.sub('[^\u4e00-\u9fa5]','',d8_3[6]))
#data12=round(float(net_data3)/1024/1024/1024,4)
print("send packets: ",data12) #接收的数据包累计
data13=int(d8_3[5])
print("recv packets: ",data13) #数据入库
#字段值基于变量的sql语句模型
sql_debug = """insert into iisEstablishConnCounts(timestramp,iisHostIp,connCounts) values(
%(timestramp)s,
'10.34.1.23',
%(connCounts)s
)
"""
# id,timestramp,location,ip,hostname,port,port_est_counts,cpu_use_ratio
# mem_total,mem_free,mem_use_ratio
# disk_drive_c_total,disk_drive_c_free,disk_drive_c_use_ratio
# send_flow,recv_flow,send_packets,recv_packets sql = """insert into ahwater_perf_monitor(timestramp,location,ip,hostname,host_use_description,port,port_est_counts,cpu_use_ratio,
mem_total,mem_free,mem_use_ratio,
disk_drive_c_total,disk_drive_c_free,disk_drive_c_use_ratio,
send_flow,recv_flow,send_packets,recv_packets) values(
%(timestramp)s,
%(location)s,
%(ip)s,
%(hostname)s,
%(host_use_description)s,
%(port)s,
%(port_est_counts)s,
%(cpu_use_ratio)s,
%(mem_total)s,
%(mem_free)s,
%(mem_use_ratio)s,
%(disk_drive_c_total)s,
%(disk_drive_c_free)s,
%(disk_drive_c_use_ratio)s,
%(send_flow)s,
%(recv_flow)s,
%(send_packets)s,
%(recv_packets)s
)
""" #print(sql)
#cursor.execute(sql_debug % dict(timestramp = dateTime,connCounts = portCounts)) #print("\n") """
print dateTime
print localT
print mip
print data01
print mport
print data02
print data03
print data04
print data05
print data06
print data07
print data08
print data09
print data10
print data11
print data12
print data13
"""
#print describe cursor.execute(sql % dict(
timestramp="'" + dateTime + "'",
location="'" + localT + "'",
ip="'" + mip + "'",
hostname="'" + data01 + "'",
host_use_description="'" + describe + "'",
port=mport,
port_est_counts=data02,
cpu_use_ratio=data03,
mem_total=data04,
mem_free=data05,
mem_use_ratio=data06,
disk_drive_c_total=data07,
disk_drive_c_free=data08,
disk_drive_c_use_ratio=data09,
send_flow=data10,
recv_flow=data11,
send_packets=data12,
recv_packets=data13
)) """
cursor.execute(sql % dict(
timestramp=dateTime,
location=localT,
ip=mip,
hostname=data01,
port=mport,
port_est_counts="'" +str(data02) + "'",
cpu_use_ratio="," +str(data03) + "'",
mem_total="'"+str(data04)+"'",
mem_free="'"+str(data05)+"'",
mem_use_ratio="'"+str(data06)+"'",
disk_drive_c_total="'"+str(data07)+"'",
disk_drive_c_free="'" +str(data08)+"'",
disk_drive_c_use_ratio="'"+str(data09)+"'",
send_flow="'"+str(data10)+"'",
recv_flow="'"+str(data11)+"'",
send_packets=data12,
recv_packets=data13
))
""" #关闭pyodbc conn连接
conn.commit()
conn.close()
#关闭paramiko ssh回话
transport.close()

python window使用paramiko简单监控数据指标数据采集的更多相关文章

  1. docker-compose(grafana influxdb) + telegraf 快速搭建简单监控

     灵活实现方案:   1:     telegraf 为go 语言写得占用内存小 收集主机各项监控数据 定时写入 时序DB   influxdb ------------------------&qu ...

  2. Python调用Prometheus监控数据并计算

    Prometheus是什么 Prometheus是一套开源监控系统和告警为一体,由go语言(golang)开发,是监控+报警+时间序列数 据库的组合.适合监控docker容器.因为kubernetes ...

  3. 使用python获取整月每一天的系统监控数据生成报表

    1.安装阿里开源监控工具tsar tsar官方网站 wget -O tsar.zip https://github.com/alibaba/tsar/archive/master.zip --no-c ...

  4. 用python实现简单EXCEL数据统计的实例

    用python实现简单EXCEL数据统计的实例 下面小编就为大家带来一篇用python实现简单EXCEL数据统计的实例.小编觉得挺不错的,现在就分享给大家,也给大家做个参考.一起跟随小编过来看看吧 任 ...

  5. Python之路,Day20 - 分布式监控系统开发

    Python之路,Day20 - 分布式监控系统开发   本节内容 为什么要做监控? 常用监控系统设计讨论 监控系统架构设计 监控表结构设计 为什么要做监控? –熟悉IT监控系统的设计原理 –开发一个 ...

  6. Python常用的库简单介绍一下

    Python常用的库简单介绍一下fuzzywuzzy ,字符串模糊匹配. esmre ,正则表达式的加速器. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable ...

  7. 探索Windows Azure 监控和自动伸缩系列2 - 获取虚拟机的监控定义和监控数据

    上一篇博文介绍了如何连接Windows Azure: http://www.cnblogs.com/teld/p/5113063.html 本篇我们继续上次的示例代码,获取虚拟机的监控定义和监控数据. ...

  8. Python股票分析系列——基础股票数据操作(一).p3

    该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第3部分.在本教程中,我们将使用我们的股票数据进一步分解一些基本的数据操作和可视化.我们将要使用 ...

  9. [博客迁移]探索Windows Azure 监控和自动伸缩系列2 - 获取虚拟机的监控定义和监控数据

    上一篇博文介绍了如何连接Windows Azure: http://www.cnblogs.com/teld/p/5113063.html 本篇我们继续上次的示例代码,获取虚拟机的监控定义和监控数据. ...

随机推荐

  1. 【转】Android ImageView圆形头像

    Android ImageView圆形头像 图片完全解析 我们在做项目的时候会用到圆形的图片,比如用户头像,类似QQ.用户在用QQ更换头像的时候,上传的图片都是矩形的,但显示的时候确是圆形的. 原理: ...

  2. ambari2.4.2在CentOS7上的二次开发

    前言:如果想安装到CentOS7,就一定要将源码在CentOS7上编译,然后安装,否则可能会出现各种问题 目录 源码结构 技术点 编译环境的搭建  安装samba 安装编译环境 整体编译 ambari ...

  3. tp后台注册登录配置项

    1.在application目录下Common/Conf/config.php中 2-17行,首先判断在data目录下有没有特意设置的db.php, config.php,route.php,如果有就 ...

  4. linux(centos)安装Nexus

    1.解压nexus压缩包 tar xvzf ./nexus-2.13.0-01-bundle.tar.gz 2.修改配置文件: 修改jetty配置 [root@localhost nexus]# vi ...

  5. Deep Learning(Ian Goodfellow) — Chapter1 Introduction

    Deep Learning是大神Ian GoodFellow, Yoshua Bengio 和 Aaron Courville合著的深度学习的武功秘籍,涵盖深度学习各个领域,从基础到前沿研究.因为封面 ...

  6. 解决:return _compile(pattern, flags).search(string) TypeError: expected string or buffer

    今天写爬虫,爬取MM图片页面的标题时,遇到了一个问题,上图: 看看我的代码: import urllib import urllib2 import re class JPMSG: def __ini ...

  7. The CHECK_POLICY and CHECK_EXPIRATION options cannot be turned OFF when MUST_CHANGE is ON. (Microsoft SQL Server,错误: 15128)

    记录下 The CHECK_POLICY and CHECK_EXPIRATION options cannot be turned OFF when MUST_CHANGE is ON. (Micr ...

  8. 项目管理理论与实践(4)——UML应用(上)

    本篇文章介绍UML的相关知识.参考<UML从入门到精通> 一.UML综述 1. UML简介 统一建模语言(UML)是一个通用的可视化建模语言,用于对软件进行描述.可视化处理.构造和建立软件 ...

  9. JDBC操作简单实用了IOUtils

    package cn.itcast.demo4; import java.io.FileInputStream; import java.io.FileOutputStream; import jav ...

  10. UVA - 1252 Twenty Questions (状压dp+vis数组加速)

    有n个物品,每个物品有m个特征.随机选择一个物品让你去猜,你每次可以询问一个特征的答案,问在采取最优策略时,最坏情况下需要猜的次数是多少. 设siz[S]为满足特征性质集合S的特征的物品总数,dp[S ...