Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习训练数据的高层特征表示的网络,DBN是一种生成模型,可见变量  与  个隐层的联合分布:

这里 x = h0为RBM在第 k 层的隐层单元条件下的可见单元的条件分布, 是一个DBN顶部可见层与隐层的条件分布,如图下:

DBN的训练:

1. 首先充分训练第一个 RBM; 
2. 固定第一个 RBM 的权重和偏移量,然后使用其隐性神经元的状态,作为第二个 RBM 的输入向量; 
3. 充分训练第二个 RBM 后,将第二个 RBM 堆叠在第一个 RBM 的上方; 
4. 重复以上三个步骤任意多次; 
5. 如果训练集中的数据有标签,那么在顶层的 RBM 训练时,这个 RBM 的显层中除了显性神经元,还需要有代表分类标签的神经元,一起进行训练: 
a) 假设顶层 RBM 的显层有 500 个显性神经元,训练数据的分类一共分成了 10 类; 
b) 那么顶层 RBM 的显层有 510 个显性神经元,对每一训练训练数据,相应的标签神经元被打开设为 1,而其他的则被关闭设为 0。
6. 对于一个4层的DBN 被训练好后如下图:( 图中的绿色部分就是在最顶层 RBM 中参与训练的标签 )
 
DBN的fun-tuning,微调阶段:
生成模型使用 Contrastive Wake-Sleep 算法进行调优,其算法过程是: 
1. 除了顶层 RBM,其他层 RBM 的权重被分成向上的认知权重和向下的生成权重; 
2. Wake 阶段:认知过程,通过外界的特征和向上的权重 (认知权重) 产生每一层的抽象表示 (结点状态) ,并且使用梯度下降修改层间的下行权重 (生成权重) 。也就是“如果现实跟我想象的不一样,改变我的权重使得我想
象的东西就是这样的”。 
3. Sleep 阶段:生成过程,通过顶层表示 (醒时学得的概念) 和向下权重,生成底层的状态,同时修改层间向上的权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概
念”。 
 
DBN的使用:
1. 使用随机隐性神经元状态值,在顶层 RBM 中进行足够多次的吉布斯抽样; 
2. 向下传播,得到每层的状态。 

(六)6.15 Neurons Networks Deep Belief Networks的更多相关文章

  1. CS229 6.15 Neurons Networks Deep Belief Networks

    Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...

  2. 受限玻尔兹曼机(RBM, Restricted Boltzmann machines)和深度信念网络(DBN, Deep Belief Networks)

    受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.

  3. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  4. Deep Belief Network简介

    Deep Belief Network简介 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强.但是, 当 ...

  5. Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络

    from:http://www.cnblogs.com/kemaswill/p/3266026.html 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: ...

  6. Reducing the Dimensionality of data with neural networks / A fast learing algorithm for deep belief net

    Deeplearning原文作者Hinton代码注解 Matlab示例代码为两部分,分别对应不同的论文: . Reducing the Dimensionality of data with neur ...

  7. 深度学习(六十九)darknet 实现实验 Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffma

    本文主要实验文献文献<Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization ...

  8. 论文翻译:2018_Source localization using deep neural networks in a shallow water environment

    论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...

  9. 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial

    Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...

随机推荐

  1. iOS正则匹配手机号

    #pragma 正则匹配手机号 + (BOOL)validateMobile:(NSString *)mobileNum {     /**      * 手机号码      * 移动:134[0-8 ...

  2. ThreadPoolTaskExecutor异步的处理报警发送邮件短信比较耗时的东东

    package com.elong.ihotel.util; import org.springframework.beans.factory.DisposableBean; import org.s ...

  3. UVA 10574 - Counting Rectangles 计数

    Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular ...

  4. 546A. Soldier and Bananas

      等差数列: 以k为首相,k为公差,w个数量的和与n的大小关系 输出max(sum-0,0) Java程序   import java.util.Scanner; public class A546 ...

  5. 可灵活扩展的自定义Session状态存储驱动

    Session是互联网应用中非常重要的玩意儿,对于超过单台部署的站点集群,都会存在会话共享的需求.在web.config中,微软提供了sessionstate节点来定义不同的Session状态存储方式 ...

  6. SPRING IN ACTION 第4版笔记-第十一章Persisting data with object-relational mapping-005Spring-Data-JPA例子的代码

    一.结构 二.Repository层 1. package spittr.db; import java.util.List; import org.springframework.data.jpa. ...

  7. 转载网易博客:整理各大网站让网站变灰的css代码

    2013-07-21 15:06:47 北京时间2013年4月20日8时02分四川省雅安市芦山县(北纬30.3,东经103.0)发生7.0级地震.震源深度13公里.各大网站将其网站变灰,本人整理了下部 ...

  8. PowerDesiger 15逆向生成工程E-R图及导出word表格

    应用环境:win8(64位)+oracle10g(32位)服务端+PowerDesigner15 需求:oracle数据库中的表结构是web工程框架hibernate 自动生成,现需要将数据库中已有的 ...

  9. Data Flow ->> Slow Changing Dimension

    这里简单讲下SCD 在讲之前贴上两个有用的链接地址.作者的两篇文件讲解了SCD是什么以及应用 http://www.cnblogs.com/biwork/p/3363749.html http://w ...

  10. eclipse调试jsp中的scriptlet代码

    在eclipse开发环境下,jsp中的scriptlet代码,也就是<%%>中的java代码,跟普通的java代码一样可以打断点单步调试的! 做个笔记,免得自己忘了!