题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2661

题意:给出一个区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x^2-y^2是一个完全平方数z^2,并且y与z互质,那么就可以将x和y一起消除,同时得到x+y点分数。要求就是,消除的数对尽可能多的前提下,得到的分数尽量多。

思路:首先暴力出所有合法的数对(x,y)。然后将每个用到的数字拆成两个点,每个数对连一条边。最后的答案除以2即可。

struct node
{
    int u,v,next,cost,cap;
};

node edges[N*100];
int head[N],e;

void add(int u,int v,int cap,int cost)
{
    edges[e].u=u;
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].cost=cost;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap,int cost)
{
    add(u,v,cap,cost);
    add(v,u,0,-cost);
}

int pre[N],F[N],C[N],visit[N];

int SPFA(int s,int t,int n)
{
    int i;
    for(i=0;i<=n;i++) F[i]=0,C[i]=INF*10000,visit[i]=0;
    queue<int> Q;
    Q.push(s); F[s]=INF; C[s]=0;
    int u,v,cost,cap;
    while(!Q.empty())
    {
        u=Q.front();
        Q.pop();

        visit[u]=0;
        for(i=head[u];i!=-1;i=edges[i].next)
        {
            if(edges[i].cap>0)
            {
                v=edges[i].v;
                cost=edges[i].cost;
                cap=edges[i].cap;
                if(C[v]>C[u]+cost)
                {
                    C[v]=C[u]+cost;
                    F[v]=min(F[u],cap);
                    pre[v]=i;
                    if(!visit[v]) visit[v]=1,Q.push(v);
                }
            }
        }
    }
    return F[t];
}

void MCMF(int s,int t,int n)
{
    int i,x,temp,M=0;
    int ans=0;
    while(temp=SPFA(s,t,n))
    {
        M+=temp;
        for(i=t;i!=s;i=edges[pre[i]].u)
        {
            x=pre[i];
            ans+=edges[x].cost*temp;
            edges[x].cap-=temp;
            edges[x^1].cap+=temp;
        }
    }
    PR(M>>1,(M*INF-ans)>>1);
}

int n,m,s,t,cnt;

int Gcd(int x,int y)
{
    if(y==0) return x;
    return Gcd(y,x%y);
}

int c[N*N],b[N],L[400],R[400];

int main()
{
    RD(n,m);
    if(n>m) swap(n,m);
    int i,j,k;
    for(i=1;i<=1000;i++) c[i*i]=i;
    for(i=n;i<=m;i++) for(j=i+1;j<=m;j++)
    {
        k=j*j-i*i;
        if(c[k]&&Gcd(i,c[k])==1)
        {
            b[i]=b[j]=1;
            cnt++;
            L[cnt]=i; R[cnt]=j;
        }
    }
    int x=0;
    for(i=n;i<=m;i++) if(b[i]) b[i]=++x;
    s=0; t=x+x+1;
    clr(head,-1);
    for(i=n;i<=m;i++) if(b[i]) Add(s,b[i],1,0),Add(b[i]+x,t,1,0);
    FOR1(i,cnt)
    {
        Add(b[L[i]],x+b[R[i]],1,INF-L[i]-R[i]);
        Add(b[R[i]],x+b[L[i]],1,INF-L[i]-R[i]);
    }
    MCMF(s,t,t+1);
}

BZOJ 2661 连连看(费用流)的更多相关文章

  1. BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流

    https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...

  2. BZOJ 1070 修车(费用流)

    如果能想到费用流,这道题就是显然了. 要求所有人的等待平均时间最小,也就是所有人的总等待时间最小. 每辆车只需要修一次,所以s连每辆车容量为1,费用为0的边. 现在需要把每个人拆成n个点,把车和每个人 ...

  3. bzoj 1070 修车 —— 费用流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1070 需要考虑前面修的车对后面等待的车造成的时间增加: 其实可以从每个人修车的顺序考虑,如果 ...

  4. BZOJ 3130: [Sdoi2013]费用流 网络流+二分

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1230  Solved: ...

  5. BZOJ 2661: [BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭 ...

  6. [BZOJ2661][BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1349  Solved: 577[Submit][ ...

  7. bzoj 3130 [Sdoi2013]费用流(二分,最大流)

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...

  8. bzoj 1283 序列 - 费用流

    题目传送门 传送门 题目大意 给定一个长度为$n$的序列,要求选出一些数使得原序列中每$m$个连续的数中不超过$K$个被选走.问最大的可能的和. 感觉建图好妙啊.. 考虑把问题转化成选$m$次数,每次 ...

  9. BZOJ 2661 连连看

    http://www.lydsy.com/JudgeOnline/problem.php?id=2661 思路:预处理出每个数字,然后若有x^2=y^2+z^2且z与y互质, s->x 1 ,0 ...

随机推荐

  1. 给uefi引导的方式安装archlinux

    基本就是照着官方的wiki来的,不过官方的wiki的内容太杂了,或许我们需要的是一个瀑布似的流程. 其实大体上与mbr引导的方式类似,只凭借回忆说一下有区别的地方,等下一次有机会的时候再验证一下. 换 ...

  2. [转]通过PowerShell工具跨多台服务器执行SQL脚本

    转至:http://www.cnblogs.com/SameZhao/p/4743692.html 有时候,当我们并没有合适的第三方工具(大部分需要付费)去管理多台数据库服务器,那么如何做最省力.省心 ...

  3. WebDriver一些常见问题的解决方法【转】

    转至:http://www.cnblogs.com/sylovezp/p/4329770.html 1.Exception NoSuchElementException: 解决方法: 1)检查目标el ...

  4. 关于ScrollView中嵌套listview焦点滑动问题 解决

    (第三种,第四种简单推荐使用) 在这里我要提出的是,listview能滚动的前提是:当listview本身的高度小于listview里的子view. 第一种方法 只需在MainActivity中 找到 ...

  5. 第三方过滤器在TVideoGrabber中的使用

    在TVideoGrabber中可以使用第三方过滤器,并可插入到预览.录制或回放流中,添加到列表里. 要在一个图像中中应用一个过滤器,需要像下面的例子中一样调用 ThirdPartyFilter_Add ...

  6. java IO复习笔记

    1. IO是什么? Input Output Java的核心库java.io提供了全面的IO接口.包括:文件读写.标准设备输出等.Java中IO是以流为基础进行输入输出的,所有数据被串行化写入输出流, ...

  7. 上海某(hong)冠笔试题

    1.解释Spring的ioc和aop 首先想说说IoC(Inversion of Control,控制倒转).这是spring的核心,贯穿始终.所谓IoC,对于spring框架来说,就是由spring ...

  8. 某硕笔试题mysql数据库部分(较为全面)

    Student(S#,Sname,Sage,Ssex) 学生表  Course(C#,Cname,T#) 课程表  SC(S#,C#,score) 成绩表  Teacher(T#,Tname) 教师表 ...

  9. 去除冗余 – 精简您的CSS样式代码

    讲讲常见的一些没有必要使用CSS代码情况,而这些不起作用可以去掉的CSS代码可能是我们经常忽视的.越是对CSS理解不够,越容易出现这些问题. 二.一些常见不必要CSS样式 1.与默认CSS样式一致 我 ...

  10. 【python cookbook】【字符串与文本】12.文本过滤和清理

    问题:例如清除在web页面表单中填入了pýtĥöñis这样的文本 解决方法:str.translate()方法 s = 'p\xfdt\u0125\xf6\xf1\x0cis\tawesome\r\n ...