FDR
声明: 网上摘抄
False discovery rate (FDR) control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors). It is a less conservative procedure for comparison, with greater power than familywise error rate (FWER) control, at a cost of increasing the likelihood of obtaining type I errors.
The q value is defined to be the FDR analogue of the p-value. The q-value of an individual hypothesis test is the minimum FDR at which the test may be called significant. One approach is to directly estimate q-values rather than fixing a level at which to control the FDR.
原来q-value是在计算FDR时候使用的,跟P value类似。下面的基本没看懂
Classification of m hypothesis tests
The following table defines some random variables related to the m hypothesis tests.
# declared non-significant | # declared significant | Total | |
---|---|---|---|
# true null hypotheses | U | V | m0 |
# non-true null hypotheses | T | S | m ? m0 |
Total | m ? R | R | m |
- m0 is the number of true null hypotheses
- m ? m0 is the number of false null hypotheses
- U is the number of true negatives
- V is the number of false positives
- T is the number of false negatives
- S is the number of true positives
- H1...Hm the null hypotheses being tested
- In m hypothesis tests of which m0 are true null hypotheses, R is an observable random variable, and S, T, U, and V are unobservable random variables.
The false discovery rate is given by and one wants to keep this value below a threshold α.
( is defined to be 0 when R = 0)
Controlling procedures
Independent tests
The Simes procedure ensures that its expected value is less than a given α (Benjamini and Hochberg 1995). This procedure is valid when the m tests are independent. Let
be the null hypotheses and
their corresponding p-values. Order these values in increasing order and denote them by
. For a given α, find the largest k such that
Then reject (i.e. declare positive) all H(i) for .
...Note, the mean α for these m tests is which could be used as a rough FDR (RFDR) or "α adjusted for m indep. tests."
NOTE: The RFDR calculation shown here is not part of the Benjamini and Hochberg method.
Dependent tests
The Benjamini and Yekutieli procedure controls the false discovery rate under dependence assumptions. This refinement modifies the threshold and finds the largest k such that:
- If the tests are independent: c(m) = 1 (same as above)
- If the tests are positively correlated: c(m) = 1
- If the tests are negatively correlated:
In the case of negative correlation, c(m) can be approximated by using the Euler-Mascheroni constant
Using RFDR above, an approximate FDR (AFDR) is the min(mean α) for m dependent tests = RFDR / ( ln(m)+ 0.57721...).
FDR的更多相关文章
- matlab FDR校正
http://home.52brain.com/forum.php?mod=viewthread&tid=27066&page=1#pid170857 http://www.mathw ...
- SPM FDR校正
来源: http://blog.sciencenet.cn/blog-479412-572049.html,http://52brain.com/thread-15512-1-1.html SPM8允 ...
- 假设检验:p-value,FDR,q-value
来源:http://blog.sina.com.cn/s/blog_6b1c9ed50101l02a.html,http://wenku.baidu.com/link?url=3mRTbARl0uPH ...
- regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码
P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...
- 学习笔记50—多重假设检验与Bonferroni校正、FDR校正
总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p ...
- 学习笔记49—matlab FDR校正
matlab自带函数mafdr,当ttest数较多时,可直接用[FDR, Q]=mafdr(P):但是Storey procedure在p值少于1000个时会崩溃,此时应改用BH FDR方法:mafd ...
- p值还是 FDR ?
p值还是 FDR ? 差异分析 如何筛选显著性差异基因,p value, FDR 如何选 经常有同学询问如何筛选差异的基因(蛋白).已经计算了表达量和p value值,差异的基因(蛋白)太多了,如何筛 ...
- 浅谈多重检验校正FDR
浅谈多重检验校正FDR Posted: 四月 12, 2017 Under: Basic By Kai no Comments 例如,在我们对鉴定到的差异蛋白做GO功能注释后,通常会计算一个p值 ...
- 差异表达分析之FDR
差异表达分析之FDR 随着测序成本的不断降低,转录组测序分析已逐渐成为一种很常用的分析手段.但对于转录组分析当中的一些概念,很多人还不是很清楚.今天,小编就来谈谈在转录组分析中,经常会遇到的一个概念F ...
随机推荐
- 回车键Enter
兼容IE与firefox火狐的回车事件(js与jquery) 原生Javascript写法: <script> document.onkeydown=function(event) { e ...
- memached 服务器lru算法
1.LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的.LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条 ...
- RemoveDPC
HOOKSSDT中加入了DPC之后 要取消DPC 首先找到DPCHookSSDT.sys的基地址和大小 通过枚举所有DPC的地址 将在范围之内的DPC定时器全部移除 枚举DPC: WinXP: 1. ...
- Js练习题之字符串转驼峰
如border-bottom-color =>borderBottomColor 传传统方法 分析: 1.转大写,需要用到字符串的toUpperCase()方法 2.去掉-,需要用到字符串方法s ...
- hihocoder 1138 Islands Travel dijkstra+heap 难度:2
http://hihocoder.com/problemset/problem/1138 很久不用最短路,几乎连基本性质也忘了,结果这道题就是某些最短路算法空间复杂度是o(n) 这里总结四种算法 算法 ...
- SpinEdit
用code给value赋值会触发 change事件
- 使用OCI向Oracle插入Geometry数据
使用C/C++操作Oracle数据库,使用OCI可谓是最强大,当然也是最难的方式.Oracle是一个功能复杂而强大的数据库,它可以很好的支持空间数据(Oracle spatial).如何使用OCI向O ...
- @ModelAttribute注解的作用
@ModelAttribute注解的作用:1.放在方法上注解不带属性: 方法无返回值: 执行其他方法时,先执行该注解标记方法. 如果方法中有将一些属性放入model的操作,其他方法model中也会共享 ...
- 提示框alertmsg
初始化: 1.Data属性:DOM添加属性data-toggle="alertmsg",并定义type及msg参数 示例代码: <button type="butt ...
- julia生成指定格式的字符串.jl
julia生成指定格式的字符串.jl """ julia生成指定格式的字符串.jl http://bbs.bathome.net/thread-39829-1-1.htm ...