HDU 5644 (费用流)
Problem King's Pilots (HDU 5644)
题目大意
举办一次持续n天的飞行表演,第i天需要Pi个飞行员。共有m种休假计划,每个飞行员表演1次后,需要休假Si天,并提供Ti报酬来进行下一次表演。刚开始拥有k个飞行员。也可以招募飞行员来进行表演(数量无限),需要提供报酬q,在p天后参加表演。询问使表演顺利进行的最少花费,若无法进行,输出No solution。
解题分析
搬运官方题解:
稍微解释一下:
首先忽略Xi。Yi向T的流量表示第i天有多少人参加表演(第2条)。S向Y1的流量表示有多少人可以参加第一天的表演(第3条),并且可以累积到后几天来参加表演(第6条)。S向Yi的流量表示招募得到的飞行员(第4条)。
接下来考虑Xi。Xi是用来解决休假问题的。Xi向Yj的流量表示到第i天已完成表演的的飞行员休假后从第j天开始可参加表演(第7条)。S向Xi的流量保证了休假的飞行员一定是已参加过表演的(第1条),并且开始休假的时间可以是任意的(第5条)。
好厉害!好强!
参考程序
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; #define V 1008
#define E 1000008
#define INF 200000000
int n,m,k,S,T,p,q,Que,num;
int ss[V],tt[V],P[V]; int pd[V],dis[V],pre[V];
struct line{
int u,v,c,w,nt;
}eg[E];
int lt[V],sum; void adt(int u,int v,int c,int w) {
eg[++sum].u=u; eg[sum].v=v; eg[sum].c=c;
eg[sum].w=w; eg[sum].nt=lt[u]; lt[u]=sum;
} void add(int u,int v,int c,int w) {
adt(u,v,c,w); adt(v,u,,-w);
// printf("%d %d %d %d\n",u,v,c,w);
} void init(){ sum=; num=;
memset(lt,,sizeof(lt));
scanf("%d%d",&n,&k);
for (int i=;i<=n;i++) { scanf("%d",&P[i]); num+=P[i]; }
scanf("%d%d%d",&m,&p,&q);
for (int i=;i<=m;i++) scanf("%d%d",&ss[i],&tt[i]); S=; T=n*+;
for (int i=;i<=n;i++) add(S,i,P[i],);
for (int i=;i<=n;i++) add(i+n,T,P[i],);
add(S,n+,k,);
for (int i=;i<=n;i++)
if (i>=p) add(S,i+n,INF,q);
for (int i=;i<n;i++) add(i,i+,INF,);
for (int i=n+;i<n*;i++) add(i,i+,INF,);
for (int j=;j<=m;j++)
for (int i=;i<=n;i++)
if (i+tt[j]<=n)
add(i,i+tt[j]+n,INF,ss[j]);
n=T; } bool spfa() {
queue <int> Q;
for (int i=;i<=n;i++) {
dis[i]=INF;
pd[i]=;
pre[i]=-;
}
dis[S]=; pd[S]=; Q.push(S);
while (!Q.empty()) {
int u = Q.front();
for (int i=lt[u];i;i=eg[i].nt)
if (eg[i].c>) {
int v=eg[i].v;
if (dis[u]+eg[i].w<dis[v]) {
dis[v]=dis[u]+eg[i].w;
pre[v]=i;
if (!pd[v]) {
Q.push(v);
pd[v]=;
}
}
}
pd[u]=;
Q.pop();
}
return dis[T]!=INF;
} void minCmaxF(){
int minC=,maxF=,flow;
while (spfa()) {
flow=INF;
for (int i=pre[T];~i;i=pre[eg[i].u])
flow=min(flow,eg[i].c);
for (int i=pre[T];~i;i=pre[eg[i].u]) {
eg[i].c-=flow;
eg[i^].c+=flow;
}
maxF+=flow;
minC+=flow*dis[T];
}
if (maxF==num) printf("%d\n",minC); else printf("No solution\n"); } int main(){
scanf("%d",&Que);
while (Que--) {
init();
minCmaxF();
}
}
HDU 5644 (费用流)的更多相关文章
- Going Home HDU - 1533 费用流
http://acm.hdu.edu.cn/showproblem.php?pid=1533 给一个网格图,每两个点之间的匹配花费为其曼哈顿距离,问给每个的"$m$"匹配到一个&q ...
- hdu 5045 费用流
滚动建图,最大费用流(每次仅仅有就10个点的二分图).复杂度,m/n*(n^2)(n<=10),今年网络赛唯一网络流题,被队友状压DP秒了....难道网络流要逐渐退出历史舞台???.... #i ...
- HDU 3376 费用流 Matrix Again
题意: 给出一个n × n的矩阵,每个格子中有一个数字代表权值,找出从左上角出发到右下角的两条不相交的路径(起点和终点除外),使得两条路径权值之和最大. 分析: 如果n比较小的话是可以DP的,但是现在 ...
- hdu 2686 费用流 / 双线程DP
题意:给一个方阵,求从左上角出到右下角(并返回到起点),经过每个点一次不重复,求最大获益(走到某处获得改点数值),下来时每次只能向右或向下,反之向上或向左. 俩种解法: 1 费用流法:思路转化:从左 ...
- hdu 4406 费用流
这题问题就是当前时刻究竟选择哪门课程,易知选择是和分数有关的,而且是一个变化的权值,所以能够用拆点的方式,把从基础分到100分都拆成点.但若这样拆点的话,跑费用流时就必须保证顺序.这样就麻烦了..观察 ...
- hdu 1853 (费用流 拆点)
// 给定一个有向图,必须用若干个环来覆盖整个图,要求这些覆盖的环的权值最小. 思路:原图每个点 u 拆为 u 和 u' ,从源点引容量为 1 费用为 0 的边到 u ,从 u' 引相同性质的边到汇点 ...
- HDU 3667 费用流 拆边 Transportation
题意: 有N个城市,M条有向道路,要从1号城市运送K个货物到N号城市. 每条有向道路<u, v>运送费用和运送量的平方成正比,系数为ai 而且每条路最多运送Ci个货物,求最小费用. 分析: ...
- HDU 3667 费用流(拆边)
题意:有n个城市(1~n),m条有向边:有k件货物要从1运到n,每条边最多能运c件货物,每条边有一个危险系数ai,经过这条路的费用需要ai*x2(x为货物的数量),问所有货物安全到达的费用. 思路:c ...
- HDU - 4780费用流
题意:M台机器要生产n个糖果,糖果i的生产区间在(si, ti),花费是k(pi-si),pi是实际开始生产的时间机器,j从初始化到生产糖果i所需的时间Cij,花费是Dij,任意机器从生产糖果i到生产 ...
随机推荐
- js 时间处理
1.格式化时间 function GetDateTimeFormatter(value) { if (value == undefined) { return &q ...
- python 将数据随机分为训练集和测试集
# -*- coding: utf-8 -*- """ Created on Tue Jun 23 15:24:19 2015 @author: hd "&qu ...
- HDU 1864
最大报销额 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- DOM系列---基础篇[转]
DOM (Document Object Model) 即文档对象模型, 针对 HTML 和 XML 文档的 API (应用程序接口) .DOM 描绘了一个层次化的节点树,运行开发人员添加.移除和修改 ...
- cocopods的使用方法
虽然网上关于CocoaPods安装教程多不胜数,但是我在安装的过程中还是出现了很多错误,所以大家可以照下来步骤装一下,我相信会很好用. 前言 在iOS项目中使用第三方类库可以说是非常常见的事,但是要正 ...
- myeclipse中导入的jquery文件报错(出现红叉叉,提示语法错误)
转自:http://blog.csdn.net/simplty/article/details/7661504
- 简易模仿手机拨号盘浮在ListView之上并且展开,折叠效果
2013-12-24 16:56:45 有时候可以看到很多手机会将Call log list和Dailer放在同一个页面中,同时Dialer是可以折叠.打开的,自己做了一个Demo,能实现这种效果,简 ...
- wp8.1 Study9:针对不同的屏幕和手机方向调整UI
一.预备知识 现在不同屏幕大小WP8.1手机越来越多,那么在设计UI时,这需要我们考虑这个问题.在WP中,比例因子(a scale factor)能很好的解决问题,而且在微软系统的PC/平板/手机都是 ...
- HDU 1693 二进制表示的简单插头dp
题目大意: 找到多条回路覆盖所有非障碍格子,问这样回路的种数 这里的插头与URAL1519 不一样的是 只要管它是否存在即可,只需要1个二进制位表示状态 #include <cstdio> ...
- android shape详解
shape--> shape属性: rectangle: 矩形,默认的形状,可以画出直角矩形.圆角矩形.弧形等 solid: 设置形状填充的颜色,只有android:color一个属性 andr ...