【LeetCode OJ】Triangle
Problem Link:
http://oj.leetcode.com/problems/triangle/
Let R[][] be a 2D array where R[i][j] (j <= i) is the minimum sum of the path from triangle[0][0] to tirangle[i][j].
We initialize R[0][0] = triangle[0][0], and update R[][] from i = 1 to n-1:
R[i][0] = triangle[i][0] + R[i-1][0]
R[i][i] = triangle[i][i] + R[i-1][i-1]
R[i][j] = triangle[i][i] + min(R[i-1][j-1], R[i-1][j]) for 1 < j < i
After scan all triangle elements, we just return the minimum value of R[n-1][..]
We note that R[i][..] is only related to R[i-1][..], so we do not need keep all rows of R[][]. Instead, we use two arrays of length n, and each time we update one with the other.
The following is a python implementation, where the time complexity is O(n2) and space complexity is O(n).
class Solution:
# @param triangle, a list of lists of integers
# @return an integer
def minimumTotal(self, triangle):
"""
We scan the triangle from the first row to the last row,
and we maintian an array s[0..n-1] where s[i] is the minimum path sum
if we pick i-th number as the path element in the current row
After scan all rows, we return the minimum value of s[].
"""
n = len(triangle)
if n == 0:
return 0
s = [[2**32] * n, [2**32] * n]
s[0][0] = triangle[0][0]
current = 0
row = 1
for i in xrange(1,n):
# Scan the i-th row, whose length is i+1
# Compute the sum reaching the first element of this row
s[1-current][0] = triangle[i][0] + s[current][0]
# Compute the sum reaching the last element of this row
s[1-current][i] = triangle[i][i] + s[current][i-1]
# Compute others
for j in xrange(1,i):
s[1-current][j] = triangle[i][j] + min(s[current][j], s[current][j-1])
# Go to next row and swith s[0] and s[1]
current = 1 - current
# Return the maximum value of S[current]
return min(s[current])
【LeetCode OJ】Triangle的更多相关文章
- 【LeetCode OJ】Interleaving String
Problem Link: http://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 ...
- 【LeetCode OJ】Reverse Words in a String
Problem link: http://oj.leetcode.com/problems/reverse-words-in-a-string/ Given an input string, reve ...
- 【LeetCode OJ】Pascal's Triangle II
Problem Link: http://oj.leetcode.com/problems/pascals-triangle-ii/ Let T[i][j] be the j-th element o ...
- 【LeetCode OJ】Pascal's Triangle
Prolbem Link: http://oj.leetcode.com/problems/pascals-triangle/ Just a nest-for-loop... class Soluti ...
- 【LeetCode OJ】Validate Binary Search Tree
Problem Link: https://oj.leetcode.com/problems/validate-binary-search-tree/ We inorder-traverse the ...
- 【LeetCode OJ】Recover Binary Search Tree
Problem Link: https://oj.leetcode.com/problems/recover-binary-search-tree/ We know that the inorder ...
- 【LeetCode OJ】Same Tree
Problem Link: https://oj.leetcode.com/problems/same-tree/ The following recursive version is accepte ...
- 【LeetCode OJ】Symmetric Tree
Problem Link: https://oj.leetcode.com/problems/symmetric-tree/ To solve the problem, we can traverse ...
- 【LeetCode OJ】Binary Tree Level Order Traversal
Problem Link: https://oj.leetcode.com/problems/binary-tree-level-order-traversal/ Traverse the tree ...
随机推荐
- Shell基础:常用技巧&重定向&管道操作
Shell脚本介绍和常用工具 Shell脚本 Shell脚本:实际就是windows里的批处理脚本,多条可一次执行的Shell命令集合.Linux上的脚本可以用很多种语言实现,bash shell是比 ...
- C++ 如何重复利用一个内存地址块
#include<iostream> using namespace std; ; }; int main(int argv ,char * args[]) { double *p1,*p ...
- 51nod 1065 最小正子段和
题目链接:51nod 1065 最小正子段和 房教说用前缀和做,然后看了别人博客懂了后就感觉,这个真有意思... #include<cstdio> #include<cstring& ...
- 探究linux文件
一.Linux的文件: 文件名区分大小写:Linux没有文件拓展名:文件名支持长文件名,含空格,少部分标点符号. - _最好不要用空格 1 GUI图形用户界面:让简单的问题更加简单: CLI命令行界面 ...
- C#.web 打开PDF
转自:http://blog.163.com/red_guitar@126/blog/static/11720612820112483221665/ string fileName = "2 ...
- struts2视频学习笔记 11-12(动态方法调用,接收请求参数)
课时11 动态方法调用 如果Action中存在多个方法时,可以使用!+方法名调用指定方法.(不推荐使用) public String execute(){ setMsg("execute&q ...
- firefox hack
@-moz-document url-prefix(){ css选择器 { css样式设置 } }
- mybatis中的mapper.xml
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...
- git 安装或者更新
1. 安装编译git时需要的包 # yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel # yum in ...
- 使用WebView加载HTML代码
使用EditText显示HTML字符串时,EditText不会对HTML标签进行任何解析,而是直接把所有HTML标签都显示出来-----就像用普通记事本显示一样:如果应用程序想重新对HTML字符串进行 ...