跟1244差不多。

//由于(x+1)没有先mod一下一直WA三个点我。。。

//由于(x+1)没有先mod一下一直WA三个点我。。。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(ll i=s;i<=t;i++)
#define dwn(i,s,t) for(ll i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define qwq(x) for(edge *o=head[x];o;o=o->next)
#define ll long long
const ll md=1e6+7;
const ll mod=1e9+7;
const int nmax=6e6+5;
struct edge{
ll to,dis;edge *next;
};
edge es[md<<1],*pt=es,*head[md];
ll pi[nmax+1];int pe[nmax+1];bool vis[nmax+1];
void add(ll u,ll v,ll d){
pt->to=v;pt->dis=d;pt->next=head[u];head[u]=pt++;
}
const ll zs=500000004;
ll get(ll x){
if(x<=nmax) return pi[x];
ll tp=x%md;qwq(tp) if(o->to==x) return o->dis;
ll ans=0,last;
for(ll i=2;i<=x;i=last+1){
last=x/(x/i);
ans=(ans+(last-i+1)%mod*get(x/i)%mod)%mod;
}
ll orz=(x%mod*((x+1)%mod)%mod*zs%mod-ans+mod)%mod;
add(tp,x,orz);
return orz;
}
int main(){
pi[1]=1;int cnt=0,tp;
rep(i,2,nmax){
if(!vis[i]) pe[++cnt]=i,pi[i]=i-1;
rep(j,1,cnt){
tp=pe[j];if(i*tp>nmax) break;vis[i*tp]=1;
if(i%tp==0){
pi[i*tp]=pi[i]*tp;break;
} pi[i*tp]=pi[i]*pi[tp];
}
}
rep(i,2,nmax) pi[i]=(pi[i]+pi[i-1])%mod;
ll n;scanf("%lld",&n);
printf("%lld\n",get(n));
return 0;
}

  

基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题
 收藏
 关注
对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质。

 
S(n) = Phi(1) + Phi(2) + ...... Phi(n),给出n,求S(n),例如:n = 5,S(n) = 1 + 1 + 2 + 2 + 4 = 10,定义Phi(1) = 1。由于结果很大,输出Mod 1000000007的结果。
Input
输入一个数N。(2 <= N <= 10^10)
Output
输出S(n) Mod 1000000007的结果。
Input示例
5
Output示例
10
相关问题
欧拉函数

0

51nod1239 欧拉函数之和的更多相关文章

  1. [51nod1239欧拉函数之和]

    来自FallDream的博客,未经允许,请勿转载,谢谢 --------------------------------------------- 给定n,求$S(n)=\sum_{i=1}^{n}\ ...

  2. 杜教筛--51nod1239 欧拉函数之和

    求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...

  3. [51nod1239] 欧拉函数之和(杜教筛)

    题面 传送门 题解 话说--就一个杜教筛--刚才那道拿过来改几行就行了-- //minamoto #include<bits/stdc++.h> #define R register #d ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  6. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  7. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  8. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  9. 【51Nod 1239】欧拉函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...

随机推荐

  1. CSS绝对定位和相对定位 position: absolute/relative

    absolute(绝对定位): 会把对象拖离HTML文档流,并通过top, left, right, bottom确定对象的具体位置,这个四个位置属性至少要设置一个,否则无法激活对象的absolute ...

  2. css两个form不换行,两个div并排代码

    1.form不换行通过table布局实现 <table> <tr> <td> <form method="get" action=&quo ...

  3. ASP.NET Web.Config配置数据库连接的一种方法

    所谓的webConfig配置数据库连接就是在里面某个特定名称的节点中写下ADP.NET中的ConnectString,就这么简单 1.首先在Web.Config文件里写下数据库连接字符串. <c ...

  4. CodeIgniter 常量ENVIRONMENT设置要注意的地方

    http://bbs.phpchina.com/thread-274514-1-1.html index.php ,这是CodeIgniter的入口文件,做开发是,都会设置一下define('ENVI ...

  5. D&F学数据结构系列——AVL树(平衡二叉树)

    AVL树(带有平衡条件的二叉查找树) 定义:一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树. 为什么要使用AVL树(即为什么要给二叉查找树增加平衡条件),已经在我之前的博文中说到过 ...

  6. ListView中EditText的数据加载错乱的问题

    我在ListView中用BaseAdapter的getView()方法加载适配器,每个Item里有一个TextView和一个EditText,当我在第一个EditText里面输入数据,比如1234时, ...

  7. HDFS2.x之RPC流程分析

    HDFS2.x之RPC流程分析 1 概述 Hadoop提供了一个统一的RPC机制来处理client-namenode, namenode-dataname,client-dataname之间的通信.R ...

  8. EXT实现表格斑马线

    Ext.grid.GridPanel 单双行颜色样式(斑马线)2014-04-03 11:25 1078人阅读 评论(0) 收藏 举报分类:ExtJs(36)Ext.grid.GridPanel st ...

  9. JVM垃圾回收机制总结(1) :一些概念

    数据类型 Java虚拟机中,数据类型可以分为两类:基本类型 和引用类型 .基本类型的变量保存原始值,即:他代表的值就是数值本身:而引用类型的变量保存引用值.“引用值”代表了某个对象的引用,而不是对象本 ...

  10. Docker基础技术:DeviceMapper

    在上一篇介绍AUFS的文章中,大家可以看到,Docker的分层镜像是怎么通过UnionFS这种文件系统做到的,但是,因为Docker首选的AUFS并不在Linux的内核主干里,所以,对于非Ubuntu ...