点击打开链接

Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24544   Accepted: 8503

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three: 



Sorted sequence determined after xxx relations: yyy...y. 

Sorted sequence cannot be determined. 

Inconsistency found after xxx relations. 



where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

题目大意是:给出若干个关系,判断是否能判断出各个数的顺序,如果能,那么输出再第几个关系的时候就能确定顺序,如果不能,有两种输出,要么出现矛盾,要么直到所有关系都判断完了也没法确定顺序

使用拓扑排序每次去掉一个入度为0的点

#include<stdio.h>
bool map[27][27];
char str[27];
int tuopu(int total)
{
bool flag[27] = {0};
int count = 0;
int inagree = 0;
int i, j;
int f;
int n = 0;
int ex;
int mark;
bool ex_flag = 0;
for(ex = 0; ex < total; ex++)
{
inagree = 0; for(i = 0; i < total; i++)
{
f = 0;
if(flag[i] == 1)
continue;
for(j = 0; j < total; j++)
{
if(map[j][i] == 1 && flag[j] == 0)
{
f = 1;
break;
}
}
if(f == 0)
{
inagree++;
mark = i;
}
if(inagree > 1)
{
ex_flag = 1;
break;
}
}
if(inagree == 0 && count < total)
{
return -1;
}
flag[mark] = 1;
count ++;
str[n ++] = 'A' + mark;
}
if(ex_flag == 1)
return 1;
str[n] = 0;
return 0;
}
int main()
{
int n, m;
while(scanf("%d %d", &n, &m), n != 0 || m != 0)
{
getchar();
int i;
char a, b;
int flag = 1;
int mark;
for(i = 1; i <= m; i++)
{
scanf("%c<%c", &a, &b);
getchar();
if(flag != -1 && flag != 0)
{
map[a - 'A'][b - 'A'] = 1;
int temp = tuopu(n);
if(temp == 0)
{
flag = 0;//成功
mark = i;
}
else if(temp == -1)
{
flag = -1;//矛盾
mark = i;
}
}
}
if(flag == 0)
printf("Sorted sequence determined after %d relations: %s.\n", mark, str);
else if(flag == 1)
printf("Sorted sequence cannot be determined.\n");
else
printf("Inconsistency found after %d relations.\n", mark);
int j;
for(i = 0; i < 27; i++)
{
for(j = 0; j < 27; j++)
map[i][j] = 0;
}
}
return 0;
}

poj 1094 Sorting It All Out(nyoj 349)的更多相关文章

  1. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

  2. POJ - 1094 Sorting It All Out(拓扑排序)

    https://vjudge.net/problem/POJ-1094 题意 对于N个大写字母,给定它们的一些关系,要求判断出经过多少个关系之后可以确定它们的排序或者排序存在冲突,或者所有的偏序关系用 ...

  3. 题解报告:poj 1094 Sorting It All Out(拓扑排序)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  4. poj.1094.Sorting It All Out(topo)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28762   Accepted: 99 ...

  5. 【POJ】1094 Sorting It All Out(拓扑排序)

    http://poj.org/problem?id=1094 原来拓扑序可以这样做,原来一直sb的用白书上说的dfs............ 拓扑序只要每次将入度为0的点加入栈,然后每次拓展维护入度即 ...

  6. POJ 1094 Sorting It All Out(经典拓扑+邻接矩阵)

    ( ̄▽ ̄)" //判环:当入度为0的顶点==0时,则有环(inconsistency) //判序:当入度为0的顶点仅为1时,则能得到有序的拓扑排序,否则无序 //边输入边判断,用contin ...

  7. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  8. POJ 1094 Sorting It All Out (拓扑排序,判断序列是否唯一,图是否有环)

    题意:给出n个字符,m对关系,让你输出三种情况:     1.若到第k行时,能判断出唯一的拓扑序列,则输出:         Sorted sequence determined after k re ...

  9. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

随机推荐

  1. childNodes、nodeName、nodeValue 以及 nodeType

    nodeName.nodeValue 以及 nodeType 包含有关于节点的信息. nodeName 属性含有某个节点的名称. 元素节点的 nodeName 是标签名称属性节点的 nodeName ...

  2. js中的各种宽高以及位置总结

    在javascript中操作dom节点让其运动的时候,常常会涉及到各种宽高以及位置坐标等概念,如果不能很好地理解这些属性所代表的意义,就不能理解js的运动原理,同时,由于这些属性概念较多,加上浏览器之 ...

  3. 解决Navicat无法连接Oracle的问题

    G:\app\hoge\product\11.2.0\dbhome_3\BIN

  4. java通过ftp和sftp上传war包上传到Linux服务器实现自动重启tomcat的脚本代码

    ar包自动上传Linux并且自动重启tomcat 用的是jdk1.7出的文件监控 支持ftp和sftp,支持多服务器负载等 配置好config 非maven项目导入直接使用 #\u76D1\u542C ...

  5. oracle11g导入dmp文件(根据用户)

    已知:用户名.密码.dmp文件 .(指即将导入dmp文件的用户名和密码) 需求:将该dmp文件导入本地oracle11g中. 步骤: 1.将该dmp文件拷贝到G:\oracle11g\admin\or ...

  6. rsync实现免密码操作的一种实现方式

    rsync是远程文件同步协议,在linux系统下,操作服务器之间的文件同步,是非常方便高效的. 但是,简单的rsync操作,往往需要和用户交互,需要用户输入密码,这个对于结合应用系统使用,比如Java ...

  7. MS CRM 2011的自定义和开发(11)——插件(plugin)开发(三)

    http://www.cnblogs.com/StoneGarden/archive/2012/02/06/2340661.html MS CRM 2011的自定义和开发(11)——插件(plugin ...

  8. Saltstack系列4:Saltstack之Grains组件

    grains说明 grains是Saltstack最重要的组件之一,grains的作用是手机被控主机的基本信息,这些信息通常都是一些静态类的数据,包括CPU.内核.操作系统.虚拟化等,在服务器端可以根 ...

  9. Visual Assist 生成注释功能

    在Visual Studio环境中编码,Visual Assist是不可缺少的好工具.这工具功能非常强大,以前仅仅用到了代码提示,今天学习了生成注释功能,非常爽. 在代码编辑器中点击右键弹出菜单,在“ ...

  10. 【hibernate】之标注枚举类型@Enumerated(转载)

    实体Entity中通过@Enumerated标注枚举类型,例如将CustomerEO实体中增加一个CustomerType类型的枚举型属性,标注实体后的代码如下所示. @Entity @Table(n ...