转自: http://www.careercup.com/question?id=6287528252407808

问题描述:

A k-palindrome is a string which transforms into a palindrome on removing at most k characters.
Given a string S, and an interger K, print "YES" if S is a k-palindrome; otherwise print "NO".
Constraints:
S has at most 20,000 characters.
0<=k<=30
Sample Test Case#1:
Input - abxa 1
Output - YES
Sample Test Case#2:
Input - abdxa 1
Output – No

解答:懒得写了,下面这段通俗易懂,就先将就着看吧

The question asks if we can transform the given string S into its reverse deleting at most K letters.
We could modify the traditional Edit-Distance algorithm, considering only deletions, and check if this edit distance is <= K. There is a problem though. S can have length = 20,000 and the Edit-Distance algorithm takes O(N^2). Which is too slow.
(From here on, I'll assume you're familiar with the Edit-Distance algorithm and its DP matrix)
However, we can take advantage of K. We are only interested *if* manage to delete K letters. This means that any position more than K positions away from the main diagonal is useless because its edit distance must exceed those K deletions.
Since we are comparing the string with its reverse, we will do at most K deletions and K insertions (to make them equal). Thus, we need to check if the ModifiedEditDistance is <= 2*K
Here's the code:

   1:  int ModifiedEditDistance(const string& a, const string& b, int k) {
   2:      int i, j, n = a.size();
   3:      // for simplicity. we should use only a window of size 2*k+1 or 
   4:      // dp[2][MAX] and alternate rows. only need row i-1
   5:      int dp[MAX][MAX];
   6:      memset(dp, 0x3f, sizeof dp);    // init dp matrix to a value > 1.000.000.000
   7:      for (i = 0 ; i < n; i++)
   8:          dp[i][0] = dp[0][i] = i;
   9:   
  10:      for (i = 1; i <= n; i++) {
  11:          int from = max(1, i-k), to = min(i+k, n);
  12:          for (j = from; j <= to; j++) {
  13:              if (a[i-1] == b[j-1])            // same character
  14:                  dp[i][j] = dp[i-1][j-1];    
  15:              // note that we don't allow letter substitutions
  16:              
  17:              dp[i][j] = min(dp[i][j], 1 + dp[i][j-1]); // delete character j
  18:              dp[i][j] = min(dp[i][j], 1 + dp[i-1][j]); // insert character i
  19:          }
  20:      }
  21:      return dp[n][n];
  22:  }
  23:  cout << ModifiedEditDistance("abxa", "axba", 1) << endl;  // 2 <= 2*1 - YES
  24:  cout << ModifiedEditDistance("abdxa", "axdba", 1) << endl; // 4 > 2*1 - NO
  25:  cout << ModifiedEditDistance("abaxbabax", "xababxaba", 2) << endl; // 4 <= 2*2 - YES

We only process 2*K+1 columns per row. So this algorithm works in O(N*K) which is fast enough.

判断一个字符串在至多删除k个字符后是否为回文串的更多相关文章

  1. js判断一个字符串中出现次数最多的字符及次数

    最近面试总是刷到这个题,然后第一次的话思路很乱,这个是我个人思路 for循环里两个 if 判断还可以优化 var maxLength = 0; var maxStr = ''; var count = ...

  2. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  3. mysql判断一个字符串是否包含某几个字符

    使用locate(substr,str)函数,如果包含,返回>0的数,否则返回0

  4. Codeforces Round #410 (Div. 2) A. Mike and palindrome【判断能否只修改一个字符使其变成回文串】

    A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. 疯子的算法总结(七) 字符串算法之 manacher 算法 O(N)解决回文串

    有点像DP的思想,写写就会做. #include<bits/stdc++.h> using namespace std; const int maxn=1e7+5; char a[maxn ...

  6. 最长(大)回文串的查找(字符串中找出最长的回文串)PHP实现

    首先还是先解释一下什么是回文串:就是从左到右或者从右到左读,都是同样的字符串.比如:上海自来水来自海上,bob等等. 那么什么又是找出最长回文串呢? 例如:字符串abcdefedcfggggggfc, ...

  7. 《LeetBook》leetcode题解(5):Longest Palindromic [M]——回文串判断

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  8. 判断一个字符串str不为空的方法

    1.str == null; 2."".equals(str); 3.str.length 4.str.isEmpty(); 注意:length是属性,一般集合类对象拥有的属性,取 ...

  9. C#算法之判断一个字符串是否是对称字符串

    记得曾经一次面试时,面试官给我电脑,让我现场写个算法,判断一个字符串是不是对称字符串.我当时用了几分钟写了一个很简单的代码. 这里说的对称字符串是指字符串的左边和右边字符顺序相反,如"abb ...

随机推荐

  1. Map,HashMap

    Map(映射),又称为字典(Dictionary),是由关键字(Key)及其对应的元素值(Value)所组成的元素单元(Element)的表单式集合. 通常,对于Map而言,使用给定的Key,可以迅速 ...

  2. Android--WebView显示Html,让其中的图片适应屏幕宽度

    //设置 防止图片太大超出屏幕 tv_web_danGe.getSettings().setLayoutAlgorithm(WebSettings.LayoutAlgorithm.SINGLE_COL ...

  3. C# DateTime详解

    //今天DateTime.Now.Date.ToShortDateString();//昨天,就是今天的日期减一DateTime.Now.AddDays(-1).ToShortDateString() ...

  4. Layout Support 获取上下bar的长度

    Layout Support This protocol . You can use layout guides as layout items in the NSLayoutConstraint f ...

  5. (转)android Fragments详解一:概述

    Fragment是activity的界面中的一部分或一种行为.你可以把多个Fragment们组合到一个activity中来创建一个多面界面并且你可以在多个activity中重用一个Fragment.你 ...

  6. JAVA标签的使用跳出循环

    public static void main(String args[]) { int i=10,j=10; outer: while (i > 0) { inner: while (j &g ...

  7. VS2013中如何更改主题颜色(深色)和恢复默认的窗口布局

    1.通常情况下,我们会根据个人爱好更改VS2013的主题颜色,一开始我喜欢白色,后来我偏爱深色. 依次选择:工具->选项->常规->主题->深色->确定,ok 2.我们在 ...

  8. 理解CSS居中

    我想很多在前端学习或者开发过程中,肯定会遇到如何让你的元素居中的问题,网上google肯定会有很多的解决方法.今天我就个人的项目与学习经验谈谈个人理解css如何让元素居中. 要理解css的居中,首先必 ...

  9. 水王ID

    题目: 三人行设计了一个灌水论坛.信息学院的学生都喜欢在上面交流灌水,传说在论坛上有一个“水王”,他不但喜欢发帖,还会回复其他ID发的每个帖子.坊间风闻该“水王”发帖数目超过了帖子数目的一半. 如果你 ...

  10. struts1 和 struts2中Action什么时候实例化

    精帖1:http://blog.csdn.net/lfsf802/article/details/7277013 精帖1:http://blog.csdn.net/wmj2003/article/de ...