转自: http://www.careercup.com/question?id=6287528252407808

问题描述:

A k-palindrome is a string which transforms into a palindrome on removing at most k characters.
Given a string S, and an interger K, print "YES" if S is a k-palindrome; otherwise print "NO".
Constraints:
S has at most 20,000 characters.
0<=k<=30
Sample Test Case#1:
Input - abxa 1
Output - YES
Sample Test Case#2:
Input - abdxa 1
Output – No

解答:懒得写了,下面这段通俗易懂,就先将就着看吧

The question asks if we can transform the given string S into its reverse deleting at most K letters.
We could modify the traditional Edit-Distance algorithm, considering only deletions, and check if this edit distance is <= K. There is a problem though. S can have length = 20,000 and the Edit-Distance algorithm takes O(N^2). Which is too slow.
(From here on, I'll assume you're familiar with the Edit-Distance algorithm and its DP matrix)
However, we can take advantage of K. We are only interested *if* manage to delete K letters. This means that any position more than K positions away from the main diagonal is useless because its edit distance must exceed those K deletions.
Since we are comparing the string with its reverse, we will do at most K deletions and K insertions (to make them equal). Thus, we need to check if the ModifiedEditDistance is <= 2*K
Here's the code:

   1:  int ModifiedEditDistance(const string& a, const string& b, int k) {
   2:      int i, j, n = a.size();
   3:      // for simplicity. we should use only a window of size 2*k+1 or 
   4:      // dp[2][MAX] and alternate rows. only need row i-1
   5:      int dp[MAX][MAX];
   6:      memset(dp, 0x3f, sizeof dp);    // init dp matrix to a value > 1.000.000.000
   7:      for (i = 0 ; i < n; i++)
   8:          dp[i][0] = dp[0][i] = i;
   9:   
  10:      for (i = 1; i <= n; i++) {
  11:          int from = max(1, i-k), to = min(i+k, n);
  12:          for (j = from; j <= to; j++) {
  13:              if (a[i-1] == b[j-1])            // same character
  14:                  dp[i][j] = dp[i-1][j-1];    
  15:              // note that we don't allow letter substitutions
  16:              
  17:              dp[i][j] = min(dp[i][j], 1 + dp[i][j-1]); // delete character j
  18:              dp[i][j] = min(dp[i][j], 1 + dp[i-1][j]); // insert character i
  19:          }
  20:      }
  21:      return dp[n][n];
  22:  }
  23:  cout << ModifiedEditDistance("abxa", "axba", 1) << endl;  // 2 <= 2*1 - YES
  24:  cout << ModifiedEditDistance("abdxa", "axdba", 1) << endl; // 4 > 2*1 - NO
  25:  cout << ModifiedEditDistance("abaxbabax", "xababxaba", 2) << endl; // 4 <= 2*2 - YES

We only process 2*K+1 columns per row. So this algorithm works in O(N*K) which is fast enough.

判断一个字符串在至多删除k个字符后是否为回文串的更多相关文章

  1. js判断一个字符串中出现次数最多的字符及次数

    最近面试总是刷到这个题,然后第一次的话思路很乱,这个是我个人思路 for循环里两个 if 判断还可以优化 var maxLength = 0; var maxStr = ''; var count = ...

  2. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  3. mysql判断一个字符串是否包含某几个字符

    使用locate(substr,str)函数,如果包含,返回>0的数,否则返回0

  4. Codeforces Round #410 (Div. 2) A. Mike and palindrome【判断能否只修改一个字符使其变成回文串】

    A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. 疯子的算法总结(七) 字符串算法之 manacher 算法 O(N)解决回文串

    有点像DP的思想,写写就会做. #include<bits/stdc++.h> using namespace std; const int maxn=1e7+5; char a[maxn ...

  6. 最长(大)回文串的查找(字符串中找出最长的回文串)PHP实现

    首先还是先解释一下什么是回文串:就是从左到右或者从右到左读,都是同样的字符串.比如:上海自来水来自海上,bob等等. 那么什么又是找出最长回文串呢? 例如:字符串abcdefedcfggggggfc, ...

  7. 《LeetBook》leetcode题解(5):Longest Palindromic [M]——回文串判断

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  8. 判断一个字符串str不为空的方法

    1.str == null; 2."".equals(str); 3.str.length 4.str.isEmpty(); 注意:length是属性,一般集合类对象拥有的属性,取 ...

  9. C#算法之判断一个字符串是否是对称字符串

    记得曾经一次面试时,面试官给我电脑,让我现场写个算法,判断一个字符串是不是对称字符串.我当时用了几分钟写了一个很简单的代码. 这里说的对称字符串是指字符串的左边和右边字符顺序相反,如"abb ...

随机推荐

  1. sqlserver,sqlite,access数据库链接字符串

    SqlServer:string connection = "server=32.1.1.48;database=数据库名;user=sa;password=sa2008"; ac ...

  2. SequoiaDB版本升级及导入导出工具说明

    升级SequoiaDB数据库指导 SequoiaDB安装路径:SDB_HOME=/opt/sequoiadb 数据存储路径:DATABASE=/ opt/sequoiadb/database 一.导出 ...

  3. 九度oj 1407 快速找出最小数

    原题链接:http://ac.jobdu.com/problem.php?pid=1407 线段树,区间更新,查询区间最小值. 注意区间更新,查询的时候,区间$\begin{align*}[L,R] ...

  4. 使用ViewSwitcher和ViewFlipper在不同布局中切换

    xml布局: <?xml version="1.0" encoding="utf-8"?><LinearLayout xmlns:androi ...

  5. b75,gtx560,I5 安装10.10.2

    1.安装变色龙,wowpc.iso,这个是可以让电脑从windows引导 mac 安装的. 2.把黑苹果CDR压到一个硬盘分区里去. 3.安装10.10.2,把安装盘里的extra拷贝到 系统盘里 , ...

  6. [转]JSON与XML的区别比较

    1.定义介绍 (1).XML定义扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允许 ...

  7. Python实现DBScan

    Python实现DBScan 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 ...

  8. 利用FormsAuthentication.RedirectFromLoginPage进行身份验证

    web.config中: <authentication>节 格式: <authentication mode="Forms">    //I.Window ...

  9. C Primer Plus学习笔记

    1.汇编语言是特地的Cpu设计所采用的一组内部指令的助记符,不同的Cpu类型使用不同的Cpu C给予你更多的自由,也让你承担更多的风险 自由的代价是永远的警惕 2.目标代码文件.可执行文件和库 3.可 ...

  10. Valuable site on github

    https://thegrid.io/?utm_source=adwords&utm_medium=cpc&utm_campaign=thegrid-display-english&a ...