题目链接

题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点。

思路 : 半平面交求多边形内核。

半平面交资料

关于求多边形内核的算法

什么是多边形的内核?

它是平面简单多边形的核是该多边形内部的一个点集,该点集中任意一点与多边形边界上一点的连线都处于这个多边形内部。就是一个在一个房子里面放一个摄像 头,能将所有的地方监视到的放摄像头的地点的集合即为多边形的核。

如上图,第一个图是有内核的,比如那个黑点,而第二个图就不存在内核了,无论点在哪里,总有地区是看不到的。

那么,如何求得这个内核区间呢?通常的算法是用两点的直线去不断切割多边形,切割到最后剩下的,就是内核区间了。

我们都知道一条直线可以将平面切割成两个区域,假设直线方程为

ax+by+c==0,那么,两个平面可分别表示成ax+by+c>=0 和 ax+by+c<0

具体如何用程序实现直线对多边形的切割呢?

流程是这样的:

1、          用一个顺时针或者逆时针的顺序,将最初的多边形的点集储存起来。

2、          按顺序取连续的两个点组成一条直线,用这条直线来切割原先的多边形

我首先假设点是顺时针储存的,如图:

此时,多边形的点集是{1,2,3,4,5,6,7,8,9,10}

取点1,和点2组成直线ax+by+c==0,这时候,将点集中的点一次带入方程ax+by+c,得到的值都将会是大于等于0的,说明所有的点都在该直线的同一侧,继续保持点集不变

取点2和点3组成直线,同样,将点集中的点依次带入方程ax+by+c中,此时,4和5两个点的结果是小于0的,而其他的点的值依旧是大于等于0,这时候说明4和5两个点被切割出了该多边形,于是现在点集只剩下{1,2,3,6,7,8,9,10,X},(X是直线23和直线56的交点)

依次类推,一直执行到点10和点1,那么内核的集合就得到了。

值得说明的是,这个例子的图形比较特殊,全是直角,如果图形比较随意,那么当某一个点被断定在多边形区间之外的时候,我们还应该考虑它和它相邻的两个点各自组成的直线和ax+by+c有没有交点,有交点的话,更新的点集中还应该加上这些交点,比如例子中执行完点2和点3组成的直线后,点集是{1,2,3,6,7,8,X},其中3和X就是这样的结果

还有,为什么将所有的点依次执行一遍,然后取剩下的某一边的点构成新的点集就够了呢?答案是,点是顺时针或者逆时针给出的~~~

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h> using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = a*x.x+b*x.y+c ;
double v = a*y.x+b*y.y+c ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
} void solve()
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
getline(p[i],p[i+]) ;//从头开始顺序遍历两个相邻点。
cut() ;
} }
int main()
{
int T ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
solve() ;
if(newn == ) puts("NO") ;
else puts("YES") ;
}
return ;
}

POJ 3335 Rotating Scoreboard(半平面交求多边形核)的更多相关文章

  1. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  2. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  3. POJ 1279 Art Gallery(半平面交求多边形核的面积)

    题目链接 题意 : 求一个多边形的核的面积. 思路 : 半平面交求多边形的核,然后在求面积即可. #include <stdio.h> #include <string.h> ...

  4. poj 3335 Rotating Scoreboard - 半平面交

    /* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...

  5. poj 3335 Rotating Scoreboard(半平面交)

    Rotating Scoreboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6420   Accepted: 25 ...

  6. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  7. poj 3335 Rotating Scoreboard (Half Plane Intersection)

    3335 -- Rotating Scoreboard 给出一个多边形,要求判断它的内核是否存在. 还是半平面交的题,在这道题中,公告板允许其所在位置与直线共线也算是可见,于是我们就可以将每一条直线微 ...

  8. POJ 3335 Rotating Scoreboard(半平面交 多边形是否有核 模板)

    题目链接:http://poj.org/problem? id=3335 Description This year, ACM/ICPC World finals will be held in a ...

  9. poj 3335 Rotating Scoreboard

    http://poj.org/problem?id=3335 #include <cstdio> #include <cstring> #include <algorit ...

随机推荐

  1. AIDL与service

    Service:Local service,一个进程中的多线程服务. AIDL:remote service,不同进程间通信. Service启动方法: startService():调用方destr ...

  2. 开发移动app与服务器端session的状态管理与交互

    我们进行web开发的时候,一般使用cookie或session来保存用户的登录状态,通过检查cookie或session的数据来验证用户是否具有对某些需要登录的页面的访问权限,这一切都是通过浏览器来完 ...

  3. 你必须懂的 T4 模板:深入浅出

    示例代码:示例代码__你必须懂的T4模板:浅入深出.rar (一)什么是T4模板? T4,即4个T开头的英文字母组合:Text Template Transformation Toolkit. T4文 ...

  4. 初识MVC,MVC里面的基本数据传递

          MVC是一种表现形式,他将Web应用程序分成三个组件即:视图(View)控制器(Controller)模型(Model). M:Model 主要是存储或者是处理数据的组件 V:View 是 ...

  5. 初探Xamarin

    Xamarin是一个基于mono的商业项目,收费,而且贼贵.官网地址是:http://xamarin.com/ 就我个人理解,收费的Xamarin提供一个for visual studio 2010/ ...

  6. ThinkPHP技巧

    在php文件可以用    echo D_S()->getLastSql();来打印出  当前的sql语句

  7. 巧用 .NET 中的「合并运算符」获得 URL 中的参数

    获取 URL 中的 GET 参数,无论用什么语言开发网站,几乎是必须会用到的代码.但获取 URL 参数经常需要注意一点就是要先判断是否有这个参数存在,如果存在则取出,如果不存在则用另一个值.这个运算称 ...

  8. CPU大小端判断

    两种方式:1.通过指针         2.通过联合体,联合体里面的数据都是按顺序存储的,而且不论联合体里面有多少数据类型,联合体长度是最长的数据类型的长度.不论初始化多少联合体里面的数据,有效的是最 ...

  9. 【转】oracle查询不到表的问题

    ORACLE的问题解决:Ora-00942:表或视图不存在 分类: 数据库2006-07-05 00:15 10793人阅读 评论(4) 收藏 举报 oraclesqlmanager 由powerde ...

  10. Spring项目跟Axis2结合

    本文的前提是已经有一个Spring的项目,在此基础上如何跟Axis2进行结合,开发出WebService服务和调用WebService服务. 1.开放WebService服务    1.引入必要的ja ...