问题描述
  给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
  例如:
  A =
  1 2
  3 4
  A的2次幂
  7 10
  15 22
输入格式
  第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
  接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
  输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
 
 
这道题题目很简单,而且数据量也很小,直接暴力算的话,应该也是可以的,但是,我还是打算用它的标准解法,矩阵快速冥来优化它的时间复杂度
#include<iostream>
#include<string.h>
using namespace std;
struct M{
int num[][];
M(){
memset(num,,sizeof(num));
}
};
M a,e;
int m;
M mul(M a,M b){//计算矩阵乘法
M c;
for(int i=;i<m;i++){
for(int j=;j<m;j++){
for(int k=;k<m;k++){
c.num[i][j]+=(a.num[i][k]*b.num[k][j]);
}
}
}
return c;
}
M multi(M c,int n){//矩阵快速冥核心代码
M b=c,r=e;
while(n){
if(n&){
r=mul(r,b);
}
b=mul(b,b);
n>>=;
}
return r;
}
int main(){
int n;
cin>>m>>n;
for(int i=;i<m;i++){
e.num[i][i]=;
for(int j=;j<m;j++){
cin>>a.num[i][j];
}
}
M x = multi(a,n);
for(int i=;i<m;i++){
for(int j=;j<m;j++){
cout<<x.num[i][j]<<" ";
}
cout<<endl;
}
return ;
}

蓝桥杯 BASIC_17 矩阵乘法 (矩阵快速幂)的更多相关文章

  1. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  2. Luogu T7152 细胞(递推,矩阵乘法,快速幂)

    Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...

  3. bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] ...

  4. poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Descri ...

  5. HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...

  6. bzoj 3240 矩阵乘法+十进制快速幂

    首先,构造出从f[][i]->f[][i+1]的转移矩阵a,和从f[i][m]->f[i+1][1]的转移矩阵b, 那么从f[1][1]转移到f[n][m]就是init*(a^(m-1)* ...

  7. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  8. 【HDOJ5950】Recursive sequence(矩阵乘法,快速幂)

    题意:f[1]=a,f[2]=b,f[i]=2f[i-2]+f[i-1]+i^4(i>=3),多组询问求f[n]对2147493647取模 N,a,b < 2^31 思路:重点在于i^4的 ...

  9. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

随机推荐

  1. hiho_1066_并查集

    题目大意 给出N个操作,每个操作可能为两种类型之一: 1. 认定两个人属于同一个组织 2. 查询两个人是否是同一个组织 要求对于每个操作类型2,给出结果,即查询的两个人是否属于同一个组织.其中,任何人 ...

  2. java写的简单通用线程池demo

    首先声明,代码部分来自网络. 1.入口DabianTest: package com.lbh.myThreadPool; import java.util.ArrayList; import java ...

  3. quartz定时任务框架的使用

    quartz定时任务时间设置 这些星号由左到右按顺序代表 :     *    *     *     *    *     *   *                                 ...

  4. IE9以上 CSS文件因Mime类型不匹配而被忽略 其他浏览器及IE8以下显示正常

     什么是Mime类型? MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型就是设定某种扩展名的文件用一种应用程序来打开的方式类型,当该扩展名 ...

  5. 1.2 认识ASP.NET MVC项目结构

    1.开发环境 操作系统:xp.vista.windows 7.windows 8.windows server 2003|2008|2008R2|2012: 集成开发环境IDE: Vsiual Stu ...

  6. JAVA智能设备基于OpenGL的3D开发技术 之AABB碰撞检测算法论述

    摘要:无论是PC机的3D还是智能设备应用上,碰撞检测始终是程序开发的难点,甚至可以用碰撞检测作为衡量3D引擎是否完善的标准.现有许多3D碰撞检测算法,其中AABB碰撞检测是一种卓有成效而又经典的检测算 ...

  7. Scrum 项目5.0

    1.团队成员完成自己认领的任务. 2.燃尽图:理解.设计并画出本次Sprint的燃尽图的理想线.参考图6. 3.每日立会更新任务板上任务完成情况.燃尽图的实际线,分析项目进度是否在正轨.    每天的 ...

  8. JavaWeb基础:HTTP协议和基于Restful的架构

    HTTP介绍 HTTP协议是互联网上应用最广泛的协议,它是一种无状态的数据传输协议,规定了数据请求方和数据响应方的数据传输方式:使用HTTP协议可以跨平台,跨语言的进行数据传输和展示. 目前的Web应 ...

  9. (02)odoo自定义模块

    * 官方建议模块骨架    --------------------------    addons/<my_module_name>/                 │─ __init ...

  10. 第二周 WBS、NABCD查阅

    WBS WBS:工作分解结构(Work Breakdown Structure) 创建WBS:创建WBS是把项目可交付成果和项目工作分解成较小的,更易于管理的组成部分的过程. WBS是项目管理重要的专 ...