poj1811 Prime Test
http://poj.org/problem?id=1811
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime>
using namespace std;
typedef __int64 LL;
const int times = ;
LL minf, n; LL random(LL n){
return (double)rand() / RAND_MAX * n + 0.5;
} LL multi(LL a, LL b, LL mod){
a %= mod, b %= mod;
LL ans = ;
while(b){
if(b & ) ans += a, ans %= mod;
b >>= ;
a <<= ;
a %= mod;
}
return ans;
} LL power(LL a, LL p, LL mod){
a %= mod;
LL ans = ;
while(p){
if(p & ) ans = multi(ans, a, mod);
p >>= ;
a = multi(a, a, mod);
}
return ans;
} LL gcd(LL a, LL b){
if(!b) return a;
return gcd(b, a % b);
} bool witness(LL a, LL n){
LL u = n - ;
while(!(u & )) u >>= ;
LL t = power(a, u, n);
while(u != n - && t != && t != n - ){
t = multi(t, t, n);
u <<= ;
}
return t == n - || u & ;
} bool miller_rabin(LL n){
if(n == ) return ;
if(n < || !(n & )) return ;
//test for odd numbers larger than 2
for(int i = ; i < times; i++){
LL p = random(n - ) + ;
if(!witness(p, n)) return ;
}
return ;
} LL pollard_rho(LL n, LL t){
LL x = random(n - ) + ;
LL y = x;
LL i = , k = , d;
while(){
++i;
x = (multi(x, x, n) + t) % n;
d = gcd(y - x, n);
if( < d && d < n) return d;
if(x == y) return n;
if(i == k){
y = x;
k <<= ;
}
}
} void fact(LL n, LL t){
if(n == ) return;
if(miller_rabin(n)){
minf = min(minf, n);
return;
}
LL p = n;
while(p >= n) p = pollard_rho(p, t--);
fact(p, t);
fact(n / p, t);
} void solve(){
//if n is prime
if(miller_rabin(n)){
puts("Prime");
return;
}
//try to factorize n
//initialize the minimum non trival factor of n
minf = n;
fact(n, );
printf("%I64d\n", minf);
} int main(){
//freopen("in.txt", "r", stdin);
int T;
scanf("%d", &T);
while(T--) scanf("%I64d", &n), solve();
return ;
}
poj1811 Prime Test的更多相关文章
- POJ1811 Prime Test(miller素数判断&&pollar_rho大数分解)
http://blog.csdn.net/shiyuankongbu/article/details/9202373 发现自己原来的那份模板是有问题的,而且竟然找不出是哪里的问题,所以就用了上面的链接 ...
- [poj1811]Prime Test(Pollard-Rho大整数分解)
问题描述:素性测试兼质因子分解 解题关键:pollard-rho质因数分解,在RSA的破译中也起到了很大的作用 期望复杂度:$O({n^{\frac{1}{4}}})$ #include<cst ...
- 【POJ1811】【miller_rabin + pollard rho + 快速乘】Prime Test
Description Given a big integer number, you are required to find out whether it's a prime number. In ...
- 【POJ1811】Prime Test
[题目大意] 若n是素数,输出“Prime”,否则输出n的最小素因子,(n<=2^54) [题解] 和bzoj3667差不多,知识这道题没那么坑. 直接上Pollord_Rho和Rabin_Mi ...
- Java 素数 prime numbers-LeetCode 204
Description: Count the number of prime numbers less than a non-negative number, n click to show more ...
- Prime Generator
Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- UVa 524 Prime Ring Problem(回溯法)
传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbe ...
- Sicily 1444: Prime Path(BFS)
题意为给出两个四位素数A.B,每次只能对A的某一位数字进行修改,使它成为另一个四位的素数,问最少经过多少操作,能使A变到B.可以直接进行BFS搜索 #include<bits/stdc++.h& ...
随机推荐
- c# 基本知识 ref 和 out
一:首先两者都是引用传递,都是按地址传递的. 二: 区别 (1)ref 默认必须初始化,out 不需要显式初始化.例如: ; int num2; refMethod(ref num1); outMet ...
- ubuntu安装jdk遇到的问题:cannot execute binary file
安装完jdk,配置好环境变量出现如下状况: cannot execute binary file 问题原因: jdk的位数与ubuntu的系统位数不一致 jdk 64位 ubuntu 32位 然后通过 ...
- 【皇甫】☀那些事儿......STEP
写项目之前呢,先来缕缕思路,既然要写学生管理系统,那肯定上不了从数据库中读取信息,然而想要从数据库中拿到你想要的东西,就要先登录,得到他的权限才行,所以我们第一步就要先搞出一个登录页面并且能连接到数据 ...
- HDU 3685 Rotational Painting(多边形质心+凸包)(2010 Asia Hangzhou Regional Contest)
Problem Description Josh Lyman is a gifted painter. One of his great works is a glass painting. He c ...
- 插入多行数据和类似 select union 方法
Cite:http://blog.csdn.net/downmoon/article/details/5936706 [ruby] view plaincopyprint? Create table ...
- PHP XDEBUG
PHP调试时,不得不提XDEBUG这个调试利器.学习PHP以来,几乎所有的问题我都利用它来解决. 首先关于如何安装,不在赘述,请自行google之.(需要特别注意的是:PHP5.2 和5.3 ,关于加 ...
- 某个系统配置文件 用户层的SQL
SELECT fpo.user_profile_option_name, fpv.level_id, fpv.level_value, fpv.profile_option_value, fu.use ...
- FRM-92101解决办法
/u02/UAT/inst/apps/UAT_newerp3/logs/ora/10.1.3/opmn/forms_default_group_1/ http://blog.csdn.net/orth ...
- 夺命雷公狗---DEDECMS----3快速入门之隐藏
如果我们在工作的时候遇到上操蛋的老板,本来公司是做医疗器械的,但是老板突然老了句我们不做医疗了,我们该做电影网,那么我们可以先将原本的栏目进行修改成隐藏栏目, 主要是预防变态老板突然来句“电影网更不好 ...
- VNC & LSF
VNC (Virtual Network Computing)是虚拟网络计算机的缩写.VNC 是一款优秀的远程控制工具软件, 由著名的 AT&T 的欧洲研究实验室开发的.VNC 是在基于 UN ...