树形DP+单调队列优化DP


  好题(也是神题……玛雅我实在是太弱了TAT,真是一个250)

  完全是抄的zyf的……orz我还是退OI保平安吧

  第一步对于每一天求出一个从第 i 个点出发走出去的最长链的长度,树形DP解决……

    g[x][0]表示从x的子树中,x到叶子的最长链,g[x][1]表示次长链。(用儿子更新父亲)

    f[x]表示从x向上走到某个父亲,再向下的最长链。(用父亲更新儿子)

  这个DP是通过两次从根出发的dfs实现的。

  那么我们现在就得到了a[i]=max(f[i],g[i][0])表示从 i 出发的最长链的长度。

  第二步是要在a数组中求一段最长的区间满足极差小于等于m。

  这个居然可以单调队列QAQ(当然啦……右端点为1~n时,左端点也是单调向右移动的!

  用两个队列分别维护最大值和最小值,将当前结点入队后,如果最大值-最小值(两个队列的队头)>m,则选一个较小的队头,以 i 为右节点的最长区间 的左端点,就是较小的队头表示的位置+1,(扔掉那个最小的以后剩下的就合法了啊)(才怪!如果不合法,继续扔,边扔边更新答案)

  sigh……DP真是一种神奇的算法……我还是too young too naive

  UPD:2015-04-24 11:14:03

  其实第二步我以前做过的QAQ,早忘了而已……

  戳这里:【HDOJ】【3530】Subsequence

 /**************************************************************
Problem: 2500
User: Tunix
Language: C++
Result: Accepted
Time:2496 ms
Memory:55960 kb
****************************************************************/ //Huce #1 C
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e6+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
int to[N],next[N],head[N],len[N],cnt;
void add(int x,int y,int z){
to[++cnt]=y; next[cnt]=head[x]; head[x]=cnt; len[cnt]=z;
}
int n,m;
LL f[N],g[N][],a[N];
void down(int x){
for(int i=head[x];i;i=next[i]){
down(to[i]);
if (g[to[i]][]+len[i]>g[x][]){
g[x][]=g[x][];
g[x][]=g[to[i]][]+len[i];
}else g[x][]=max(g[x][],g[to[i]][]+len[i]);
}
}
void up(int x){
int y;
for(int i=head[x];i;i=next[i]){
f[y=to[i]]=f[x]+len[i];
if (g[y][]+len[i]==g[x][]) f[y]=max(f[y],g[x][]+len[i]);
else f[y]=max(f[y],g[x][]+len[i]);
up(y);
}
}
int Q1[N],Q2[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
#endif
n=getint(); m=getint();
int x,y,z;
F(i,,n){
x=getint(); z=getint();
add(x,i,z);
}
down(); up();
F(i,,n) a[i]=max(f[i],g[i][]);
LL ret=,ans=;int l1=,r1=-,l2=,r2=-;
F(i,,n){
while(l1<=r1 && a[i]<=a[Q1[r1]]) r1--;
Q1[++r1]=i;
while(l2<=r2 && a[i]>=a[Q2[r2]]) r2--;
Q2[++r2]=i;
while(a[Q2[l2]]-a[Q1[l1]]>m)
ret=Q1[l1]<Q2[l2] ? Q1[l1++]+ : Q2[l2++]+;
ans=max(ans,i-ret+);
}
printf("%lld\n",ans);
return ;
}

2500: 幸福的道路

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 153  Solved: 60
[Submit][Status][Discuss]

Description

小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光.
他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图.
他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后
顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……).
而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M).他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?
现在,他们把这个艰巨的任务交给你了!

Input

第一行包含两个整数N, M(M<=10^9).
第二至第N行,每行两个数字Fi , Di, 第i行表示第i个节点的父亲是Fi,且道路的幸福值是Di.

Output

最长的连续锻炼天数

Sample Input

3 2
1 1
1 3

Sample Output

3
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【2500】幸福的道路的更多相关文章

  1. [BZOJ 2500] 幸福的道路

    照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 368  Solved: 145[Submit][Sta ...

  2. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  3. ●BZOJ 2500 幸福的道路

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2500 题解: DFS,单调队列 首先有一个结论,距离树上某一个点最远的点一定是树的直径的一个 ...

  4. bzoj 2500 幸福的道路 树上直径+set

    首先明确:树上任意一点的最长路径一定是直径的某一端点. 所以先找出直径,求出最长路径,然后再求波动值<=m的最长区间 #include<cstdio> #include<cst ...

  5. BZOJ 2500 幸福的道路(race) 树上直径+平衡树

    structHeal { priority_queue<int> real; priority_queue<int> stack; void push(int x){ real ...

  6. BZOJ2500: 幸福的道路

    题解: 一道不错的题目. 树DP可以求出从每个点出发的最长链,复杂度O(n) 然后就变成找一个数列里最长的连续区间使得最大值-最小值<=m了. 成了这题:http://www.cnblogs.c ...

  7. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  8. [Bzoj2500]幸福的道路(树上最远点)

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 474  Solved: 194[Submit][Status][Discuss ...

  9. 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法

    [BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...

随机推荐

  1. linux 常用命令及技巧

    linux 常用命令及技巧 linux 常用命令及技巧:linux 常用命令总结: 一. 通用命令: 1. date :print or set the system date and time 2. ...

  2. 19) Java并发

    >synchronized synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块.  1>synchronized 方法:通过在 ...

  3. SQL Server中查询结果拼接遇到的小问题

    前天的项目,刚接手,对于模块还不是很熟悉,其中有一个模块,涉及到4个表,其中主要的表就有两个,只要把这个弄清楚了就一切回归于“太平”了. 模块要求:把两个表的内容查询出来,结果连接在一起.大师说完,感 ...

  4. JavaWeb之 JSP基础

    什么是JSP JSP的全称是java server page, java服务页面.是提供java服务的页面~ 那么和Servlet有什么区别呢?JSP的页面既可以写java代码~也可以写html代码哦 ...

  5. ES6 入门系列 - 函数的扩展

    1函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console.log( ...

  6. eclipse导出Runnable Jar File在Launch Configuration中找不到类

    1.只要选择中你需要Launch Configuration中出现的类,右击Run AS -- Java Application 再次. 2.点击导出Export的时候,就可以看到类在列表中出现了. ...

  7. hdu 3342 Legal or Not

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Description ACM-DIY is a large QQ g ...

  8. Android中焦点移到ListView的有关问题

    一个解决办法 这不是一个根本解决的方法:写一个新的class,继承ListView,覆盖onFocusChanged. @Override protected void onFocusChanged( ...

  9. mvc中使用knockoutjs和ajax

    虽然说knockoutjs 官网上写的非常的清楚!但是像我这样的英语呕吐患者,真是虐心啊!今天我写下做个记录,也为那些初次使用的同学给予帮助, 首先我说一下今天我说的内容只是应用不做原理探究,如果没有 ...

  10. 如何在ios 系统 中抓包??

    为了实现在ios系统上抓包,如下步骤: 1,设备越狱 2,在cydia-软件源-设置中改为开发者,否则有些deb搜索不到 安装如下软件:OpenSSH,OpenSSL,wget (下载工具) Apti ...