【BZOJ】【2500】幸福的道路
树形DP+单调队列优化DP
好题(也是神题……玛雅我实在是太弱了TAT,真是一个250)
完全是抄的zyf的……orz我还是退OI保平安吧
第一步对于每一天求出一个从第 i 个点出发走出去的最长链的长度,树形DP解决……
g[x][0]表示从x的子树中,x到叶子的最长链,g[x][1]表示次长链。(用儿子更新父亲)
f[x]表示从x向上走到某个父亲,再向下的最长链。(用父亲更新儿子)
这个DP是通过两次从根出发的dfs实现的。
那么我们现在就得到了a[i]=max(f[i],g[i][0])表示从 i 出发的最长链的长度。
第二步是要在a数组中求一段最长的区间满足极差小于等于m。
这个居然可以单调队列QAQ(当然啦……右端点为1~n时,左端点也是单调向右移动的!)
用两个队列分别维护最大值和最小值,将当前结点入队后,如果最大值-最小值(两个队列的队头)>m,则选一个较小的队头,以 i 为右节点的最长区间 的左端点,就是较小的队头表示的位置+1,(扔掉那个最小的以后剩下的就合法了啊)(才怪!如果不合法,继续扔,边扔边更新答案)
sigh……DP真是一种神奇的算法……我还是too young too naive
UPD:2015-04-24 11:14:03
其实第二步我以前做过的QAQ,早忘了而已……
/**************************************************************
Problem: 2500
User: Tunix
Language: C++
Result: Accepted
Time:2496 ms
Memory:55960 kb
****************************************************************/ //Huce #1 C
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e6+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
int to[N],next[N],head[N],len[N],cnt;
void add(int x,int y,int z){
to[++cnt]=y; next[cnt]=head[x]; head[x]=cnt; len[cnt]=z;
}
int n,m;
LL f[N],g[N][],a[N];
void down(int x){
for(int i=head[x];i;i=next[i]){
down(to[i]);
if (g[to[i]][]+len[i]>g[x][]){
g[x][]=g[x][];
g[x][]=g[to[i]][]+len[i];
}else g[x][]=max(g[x][],g[to[i]][]+len[i]);
}
}
void up(int x){
int y;
for(int i=head[x];i;i=next[i]){
f[y=to[i]]=f[x]+len[i];
if (g[y][]+len[i]==g[x][]) f[y]=max(f[y],g[x][]+len[i]);
else f[y]=max(f[y],g[x][]+len[i]);
up(y);
}
}
int Q1[N],Q2[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
#endif
n=getint(); m=getint();
int x,y,z;
F(i,,n){
x=getint(); z=getint();
add(x,i,z);
}
down(); up();
F(i,,n) a[i]=max(f[i],g[i][]);
LL ret=,ans=;int l1=,r1=-,l2=,r2=-;
F(i,,n){
while(l1<=r1 && a[i]<=a[Q1[r1]]) r1--;
Q1[++r1]=i;
while(l2<=r2 && a[i]>=a[Q2[r2]]) r2--;
Q2[++r2]=i;
while(a[Q2[l2]]-a[Q1[l1]]>m)
ret=Q1[l1]<Q2[l2] ? Q1[l1++]+ : Q2[l2++]+;
ans=max(ans,i-ret+);
}
printf("%lld\n",ans);
return ;
}
2500: 幸福的道路
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 153 Solved: 60
[Submit][Status][Discuss]
Description
顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……).
而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
Input
Output
Sample Input
1 1
1 3
Sample Output
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000
HINT
Source
【BZOJ】【2500】幸福的道路的更多相关文章
- [BZOJ 2500] 幸福的道路
照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 368 Solved: 145[Submit][Sta ...
- [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案
考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...
- ●BZOJ 2500 幸福的道路
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2500 题解: DFS,单调队列 首先有一个结论,距离树上某一个点最远的点一定是树的直径的一个 ...
- bzoj 2500 幸福的道路 树上直径+set
首先明确:树上任意一点的最长路径一定是直径的某一端点. 所以先找出直径,求出最长路径,然后再求波动值<=m的最长区间 #include<cstdio> #include<cst ...
- BZOJ 2500 幸福的道路(race) 树上直径+平衡树
structHeal { priority_queue<int> real; priority_queue<int> stack; void push(int x){ real ...
- BZOJ2500: 幸福的道路
题解: 一道不错的题目. 树DP可以求出从每个点出发的最长链,复杂度O(n) 然后就变成找一个数列里最长的连续区间使得最大值-最小值<=m了. 成了这题:http://www.cnblogs.c ...
- bzoj2500幸福的道路 树形dp+单调队列
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 434 Solved: 170[Submit][Status][Discuss ...
- [Bzoj2500]幸福的道路(树上最远点)
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 474 Solved: 194[Submit][Status][Discuss ...
- 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法
[BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...
随机推荐
- Linux基础知识-文件管理
Linux目录与路径 cd:切换目录 例如:cd ~willhua,则回到用户willhua的主文件夹 cd ~或者cd,则表示回到自己的的主文件夹 cd -,则表示回到上个目录 pwd:显示目前 ...
- ip的正则表达式 完美版
IP地址的长度为32位2进制,分为4段,每段8位,用十进制数字表示,每段数字范围为0~255,段与段之间用英文句点“.”隔开.例如:IP地址为10.0.0.100. 分析IP地址的每组数特点:百位,十 ...
- 单个input框上传多个文件操作
HTML页面: <div class="form-group thumb"> <label class="control-label col-xs-12 ...
- mysql批量修改表引擎
生成修改的语句 SELECT CONCAT('ALTER TABLE ',table_name,' ENGINE=InnoDB;') FROM information_schema.tables WH ...
- Nginx 403 forbidden的解决办法
Nginx 403 forbidden的解决办法. 常见的,引起nginx 403 forbidden有二种原因,一是缺少索引文件,二权限问题. 1.缺少index.html或者index.php文件 ...
- windows7安装IE11点击图标没反应
可以通过修改 Windows 注册表的方式解决: Win+R 打开“运行”后输入 regedit 打开 注册表编辑器 打开注册表编辑器(regedit)以后,找到注册表项HKEY_CURRENT_US ...
- delphi 基础之二 面向对象概念初步
面向对象概念初步 •类自动生成 快捷键:ctrl+shift+c 1.类的定义 类是用户创建的数据类型,包括状态.表达式和一些操作.有3个组成部分,即字段.方法和属性.字段是类的内部数据变量,方法就是 ...
- Android SDK API (2.2,2.3,3.0)中文版文档
转的一篇.觉得很有用. Android SDK API (2.2,2.3,3.0)中文版文档 地址:http://android.laoguo.org固定连接:http://www.laoguo.or ...
- C语言中内存对齐方式
一.什么是对齐,以及为什么要对齐: 1. 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问, ...
- 菜鸟学习Struts——Scope属性
一.概念. 在Action映射配置中,Scope属性可以取值为:request或session.Scope属性表示:Struts框架在将 ActionForm对象(与目标Action匹配的Ac ...