一、概述

  对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式。

  PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言。如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格式的文件,再在其他平台(如java)中加载该文件进行使用,从而实现模型的跨平台部署。

二、实现步骤

 1.训练环境中安装生成pmml文件的工具。

  如在Python环境中安装sklearn2pmml模块(pip install sklearn2pmml)。

 2.训练模型。

 3.将模型保存为pmml文件。

 4.部署环境中导入依赖的工具包。

  如在Java环境中导入pmml-evaluator、pmml-evaluator-extension(特殊情况下另加)、jaxb-core、jaxb-api、jaxb-impl等jar包。

 5.开发应用,加载、使用模型。

:对sklearn2pmml生成的pmml模型文件,在java中加载使用时,需将文件中的命名空间属性xmlns=".../PMML-4_4"改为xmlns=".../PMML-4_3",以适应低版本的jar包对它的解析。

三、示例

  在python中使用sklearn训练一个线性回归模型,并在java环境中部署使用。

工具:PyCharm-2017、Python-39、sklearn2pmml-0.76.1;IntelliJ IDEA-2018、jdk-14.0.2。

1.训练数据集training_data.csv

2.训练、保存模型

import sklearn2pmml as pmml
from sklearn2pmml import PMMLPipeline
from sklearn import linear_model as lm
import os
import pandas as pd def save_model(data, model_path):
pipeline = PMMLPipeline([("regression", lm.LinearRegression())]) #定义模型,放入pipeline管道
pipeline.fit(data[["x"]], data["y"]) #训练模型,由数据中第一行的名称确定自变量和因变量
pmml.sklearn2pmml(pipeline, model_path, with_repr=True) #保存模型 if __name__ == "__main__":
data = pd.read_csv("training_data.csv")
model_path = model_path = os.path.dirname(os.path.abspath(__file__)) + "/my_example_model.pmml"
save_model(data, model_path)
print("模型保存完成。")

3.将pmml文件的xmlns属性修改为PMML-4_3

4.java程序中加载、使用模型

(1)创建maven项目,将pmml模型文件拷贝至项目根目录下。

(2)加入依赖包

<dependencies>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.4.15</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
<version>2.2.11</version>
</dependency>
<dependency>
<groupId>javax.xml</groupId>
<artifactId>jaxb-api</artifactId>
<version>2.1</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
<version>2.2.11</version>
</dependency>
</dependencies>

(3)java程序加载模型完成预测

public class MLPmmlDeploy {
public static void main(String[] args) { String model_path = "./my_example_model.pmml"; //模型路径
int x = 20; //测试的自变量值 Evaluator model = loadModel(model_path); //加载模型
Object r = predict(model, x); //预测 Double result = Double.parseDouble(r.toString());
System.out.println("预测的结果为:" + result);
} private static Evaluator loadModel(String model_path){
PMML pmml = new PMML(); //定义PMML对象
InputStream inputStream; //定义输入流
try {
inputStream = new FileInputStream(model_path); //输入流接到磁盘上的模型文件
pmml = PMMLUtil.unmarshal(inputStream); //将输入流解析为PMML对象
}catch (Exception e){
e.printStackTrace();
} ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance(); //实例化一个模型构造工厂
Evaluator evaluator = modelEvaluatorFactory.newModelEvaluator(pmml); //将PMML对象构造为Evaluator模型对象 return evaluator;
} private static Object predict(Evaluator evaluator, int x){
Map<String, Integer> data = new HashMap<String, Integer>(); //定义测试数据Map,存入各元自变量
data.put("x", x); //键"x"为自变量的名称,应与训练数据中的自变量名称一致
List<InputField> inputFieldList = evaluator.getInputFields(); //得到模型各元自变量的属性列表 Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
for (InputField inputField : inputFieldList) { //遍历各元自变量的属性列表
FieldName inputFieldName = inputField.getName();
Object rawValue = data.get(inputFieldName.getValue()); //取出该元变量的值
FieldValue inputFieldValue = inputField.prepare(rawValue); //将值加入该元自变量属性中
arguments.put(inputFieldName, inputFieldValue); //变量名和变量值的对加入LinkedHashMap
} Map<FieldName, ?> results = evaluator.evaluate(arguments); //进行预测
List<TargetField> targetFieldList = evaluator.getTargetFields(); //得到模型各元因变量的属性列表
FieldName targetFieldName = targetFieldList.get(0).getName(); //第一元因变量名称
Object targetFieldValue = results.get(targetFieldName); //由因变量名称得到值 return targetFieldValue;
} }

示例下载:

https://download.csdn.net/download/Albert201605/45645889

End.

参考

  1. https://www.freesion.com/article/4628411548/
  2. https://www.cnblogs.com/pinard/p/9220199.html
  3. https://www.cnblogs.com/moonlightpoet/p/5533313.html

使用pmml实现跨平台部署机器学习模型的更多相关文章

  1. 使用pmml跨平台部署机器学习模型Demo——房价预测

      基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2 ...

  2. 使用Flask部署机器学习模型

    Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...

  3. 用PMML实现机器学习模型的跨平台上线

    在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环 ...

  4. 用PMML实现python机器学习模型的跨平台上线

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  5. 使用ML.NET + ASP.NET Core + Docker + Azure Container Instances部署.NET机器学习模型

    本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. ...

  6. tensorflow机器学习模型的跨平台上线

    在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法 ...

  7. Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型

    机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述, ...

  8. 基于FastAPI和Docker的机器学习模型部署快速上手

    针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker ...

  9. 为你的机器学习模型创建API服务

    1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Pyt ...

随机推荐

  1. NOIP 模拟五 考试总结

    T1string T1开的不错,看到这个题很激动,类似与HEOI2016排序,好像还要更简单一些,于是迅速冲了个桶排.因为洛谷上排序那道题是用桶排水的,所以我觉得没必要打线段树了,极端大数据20秒冲过 ...

  2. SpringBoot 如何进行限流?老鸟们都这么玩的!

    大家好,我是飘渺.SpringBoot老鸟系列的文章已经写了四篇,每篇的阅读反响都还不错,那今天继续给大家带来老鸟系列的第五篇,来聊聊在SpringBoot项目中如何对接口进行限流,有哪些常见的限流算 ...

  3. iOS实现XMPP通讯(二)XMPP编程

    项目概述 这是一个可以登录jabber账号,获取好友列表,并且能与好友进行聊天的项目. 使用的是第三方库XMPPFramework框架来实现XMPP通讯. 项目地址:XMPP-Project 项目准备 ...

  4. Data Interoperability Tools

    这里的工具貌似没有对应函数~~~

  5. pycharm中设置自己的文件模板

    File>>Settings>>Editor>>File and Code Templates 选择文件类型Python Scripts,输入文件模板类型 #!/u ...

  6. FastAPI 学习之路(十七)上传文件

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  7. MS office设置夜间模式

    点击文件 帐户 -> office主题

  8. 使用.NET(C#或VB.NET)开发NX外部程序

    1.如何不用将exe程序拷贝到UGII目录下运行? 答:在调用NX Open命令函数前,将当前目录移动到NX安装目录\UGII\,NX安装目录必须和环境变量UGII_BASE_DIR的值一致,否则报错 ...

  9. Poetry(1)Poetry介绍与安装

    介绍 Poetry 是Python 中的依赖管理和打包工具,当然它也可以配置虚拟环境.它允许您声明项目所依赖的库,并为您管理(安装/更新)它们. 之前一直使用virtualenvwrapper管理虚拟 ...

  10. 【转载】[经验] 嵌入式stm32实用的排序算法 - 交换排序

    Ⅰ.写在前面 前面写了关于ADC采集电压的文章,大家除了求平均的方式来处理采样值,还有没有使用到其他的方式来处理采集值呢? 在某些情况下就需要对一组数据进行排序,并提取头特定的数据出来使用. 排序的应 ...