今天被人问到volatile能不能保证并发安全?

呵,这能难倒我?

上代码:

//电脑太好,100线程起步~
public class ThreadTest {
private static volatile int num = 0; public static void main(String[] args) throws InterruptedException {
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start(); new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start(); new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start(); new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start(); new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start();
new Thread(() -> {
for (int i = 0; i < 100; i++) {
num++;
System.out.println(num);
}
}).start(); Thread.sleep(500);
System.out.println(num);
}
}
输出结果:
  9998
  9998

分析:

  100个线程对volatilei修饰的num++,会被编译成以下三步:
   1.获取i的值;2.执行i+1;3.将结果赋值给i。
  volatile只能保证可见性,并不能保证原子性。

结论:
  volatile只能保证这3步在编译后指令不会被重新排序,并不能保证并发数据安全。建议搭配上synchronized或其他Lock锁使用。

volatile修饰全局变量,可以保证并发安全吗?的更多相关文章

  1. volatile修饰符

    Volatile 修饰的成员变量在每次被线程访问时,都强制从共享内存中重新读取该成员变量的值.而且,当成员变量发生变化时,会强制线程将变化值回写到共享内存.这样在任何时刻,两个不同的线程总是看到某个成 ...

  2. Java 的 volatile 修饰符

    volatile 修饰符,用于多线程同步 volatile 修饰的成员变量在每次被线程访问时,都强制从共享内存中重新读取该成员变量的值.而且,当成员变量发生变化时,会强制线程将变化值回写到共享内存.这 ...

  3. Java中volatile修饰符,不稳定标记的用法笔记

    今天学java特性时,发现了volatile修饰符,这个修饰符修饰的变量告诉java编译器忽略优化机制,这样的优势是: java优化后,寄存器会缓存内存里的变量,另一个线程修改这个变量的内存时,不会同 ...

  4. java中Volatile修饰符的含义

    在java语言中:为了获得最佳速度,同意线程保存共享成员变量的私有拷贝.并且仅仅当线程进入或者离开同步代码块时才与共享成员变量的原始值进行对照. volatilekeyword的作用就是提示vm:对于 ...

  5. Java volatile修饰字段

     一.关键字volatile修饰字段: 使用特殊域变量(volatile)实现线程同步 volatile:不稳定的:反复无常的:易挥发的: 1.volatile关键字为域变量的访问提供了一种免锁机制, ...

  6. volatile 修饰符的有过什么实践?

    一种实践是用 volatile 修饰 long 和 double 变量,使其能按原子类型来读写. double 和 long 都是 64 位宽,因此对这两种类型的读是分为两部分的,第一次 读取第一个  ...

  7. 三个线程,ABC 10次(volatile+synchronized(2 synchronized可以保证内存可见性,所以去掉status 的volatile修饰符)

    package ThreadABC; public class MyThread extends Thread { public static int status = 0; @Override pu ...

  8. 关于STM32库中 __IO 修饰符(volatile修饰符,反复无常的意思)

    STM32例子代码中会有像这样的代码 static __IO uint32_t TimingDelay;  这里边的__IO修饰符不好理解,单从字面可以看出是为IO相关,查其标准库可以得知这个__IO ...

  9. STM32库中 __IO 修饰符(volatile修饰符)

    STM32例子代码中会有像这样的代码 static __IO uint32_t TimingDelay; 这里边的__IO修饰符不好理解,单从字面可以看出是为IO相关,查其标准库可以得知这个__IO原 ...

随机推荐

  1. Adapper 入门

    Adapper 入门 特点 单实体实现自动装配.连表查询需要自己处理装配,查看查询. 原生sql语句. 连接接口: IDbConnection connection = new SqlConnecti ...

  2. nacos--配置中心之客户端

    nacos提供com.alibaba.nacos.api.config.ConfigService作为客户端的API用于发布,订阅,获取配置信息: ConfigService获取配置信息流程: 优先使 ...

  3. 【Arduino学习笔记01】关于Arduino引脚的一些笔记

    参考链接:https://www.yiboard.com/thread-831-1-1.html Arduino Uno R3 - 引脚图 Arduino Uno R3 - 详细参数 Arduino ...

  4. SpringCloud-服务与注册

    SpringCloud- Eureka服务注册与发现 1.概述 springcloud是一个非常优秀的微服务框架,要管理众多的服务,就需要对这些服务进行治理,管理每个服务与每个服务之间的依赖关系,可以 ...

  5. 爬虫必知必会(4)_异步协程-selenium_模拟登陆

    一.单线程+多任务异步协程(推荐) 协程:对象.可以把协程当做是一个特殊的函数.如果一个函数的定义被async关键字所修饰.该特殊的函数被调用后函数内部的程序语句不会被立即执行,而是会返回一个协程对象 ...

  6. 使用HTML、jquery、DOM创建文本

    <html> <head> <meta charset="utf-8"> <meta charset="utf-8"& ...

  7. 现代c++模板元编程:遍历tuple

    tuple是c++11新增的数据结构,通过tuple我们可以方便地把各种不同类型的数据组合在一起.有了这样的数据结构我们就可以轻松模拟多值返回等技巧了. tuple和其他的容器不同,标准库没有提供适用 ...

  8. spring-boot记录sql探索

    目标记录每次请求内的http.es.mysql耗时,本篇讨论mysql部分 为什么说要探索,这不是很简单的事么?但是能满足以下几点么? 能记录limit等参数 能将参数和sql写一起,能直接使用 能记 ...

  9. 事件 on

    $(选择器).on(事件名称,事件的处理函数) 事件名称:js事件去掉on的部分,例如js中onclick,这里就是click 例如:<input type="button" ...

  10. GRU算法原理

    一.GRU算法 GRU(Gate Recurrent Unit,循环门单元)是循环神经网络(Recurrent Neural Network, RNN)的一种.和LSTM(Long-Short Ter ...