deeplearning模型分析
deeplearning模型分析
FLOPs
paddleslim.analysis.flops(program, detail=False)
获得指定网络的浮点运算次数(FLOPs)。
参数:
- program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍。
- detail(bool) - 是否返回每个卷积层的FLOPs。默认为False。
- only_conv(bool) - 如果设置为True,则仅计算卷积层和全连接层的FLOPs,即浮点数的乘加(multiplication-adds)操作次数。如果设置为False,则也会计算卷积和全连接层之外的操作的FLOPs。
返回值:
- flops(float) - 整个网络的FLOPs。
- params2flops(dict) - 每层卷积对应的FLOPs,其中key为卷积层参数名称,value为FLOPs值。
示例:
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import flops
def conv_bn_layer(input,
num_filters,
filter_size,
name,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + "_out")
bn_name = name + "_bn"
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '_output',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
main_program = fluid.Program()
startup_program = fluid.Program()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with fluid.program_guard(main_program, startup_program):
input = fluid.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
print("FLOPs: {}".format(flops(main_program)))
model_size
paddleslim.analysis.model_size(program)
获得指定网络的参数数量。
参数:
- program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍。
返回值:
- model_size(int) - 整个网络的参数数量。
示例:
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import model_size
def conv_layer(input,
num_filters,
filter_size,
name,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + "_out")
return conv
main_program = fluid.Program()
startup_program = fluid.Program()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with fluid.program_guard(main_program, startup_program):
input = fluid.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_layer(input, 8, 3, "conv1")
conv2 = conv_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_layer(sum1, 8, 3, "conv3")
conv4 = conv_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_layer(sum2, 8, 3, "conv5")
conv6 = conv_layer(conv5, 8, 3, "conv6")
print("FLOPs: {}".format(model_size(main_program)))
TableLatencyEvaluator
classpaddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=", ")
基于硬件延时表的模型延时评估器。
参数:
- table_file(str) - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:PaddleSlim硬件延时评估表格式
- delimiter(str) - 在硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。
返回值:
- Evaluator - 硬件延时评估器的实例。
latency(graph)
获得指定网络的预估延时。
参数:
- graph(Program) - 待预估的目标网络。
返回值:
- latency - 目标网络的预估延时。
deeplearning模型分析的更多相关文章
- 数据挖掘应用案例:RFM模型分析与客户细分(转)
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模 ...
- dlib人脸关键点检测的模型分析与压缩
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...
- 高级设计总监的设计方法论——5W1H需求分析法 KANO模型分析法
本期开始进入设计方法论的学习,大湿自己也是边学边分享,算是巩固一遍吧: 另外这些理论基本都是交叉结合来应用于工作中,我们学习理论但不要拘泥于理论的框架中,掌握后要灵活运用一点- 这些理论一部分来自于我 ...
- 基于Python的信用评分卡模型分析(二)
上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...
- No.1_NABCD模型分析
Reminder 之 NABCD模型分析 定位 多平台的闹钟提醒软件. 在安卓市场发布软件,发布后一周的用户量为1000. N (Need 需求) 这个 ...
- Task 6.1 校友聊之NABCD模型分析
我们团队开发的一款软件是“校友聊”--一个在局域网内免流量进行文字.语音.视频聊天的软件.下面将对此进行NABCD的模型分析. N(Need需求):现如今,随着网络的迅速普及,手机和电脑已经成为每个大 ...
- (小组)第六次作业:NABCD模型分析。产品Backlog。
NABCD模型分析: NABCD模型分析 1.N——need需求 随着时代的进步,人们生活水平的提高,现在手机的普及率已经非常高了,而且现在的家长很多时候会忙于工作,很少会花时间出来给自己读小学的孩子 ...
- libevent-select模型分析
下面内容为windows下select模型分析,原博客链接 http://blog.csdn.net/fish_55_66/article/details/50352080 https://www.c ...
- 产品需求分析神器:KANO模型分析法
前言: 任何一个互联网产品,哪怕是一个简单的页面,也会涉及到很多的需求,产品经理也会经常遇到这样的情况:老板,业务提的各种新需求一下子都扎堆,哪个需求对用户来说最重要,用户对我们的新功能是否满意?开发 ...
随机推荐
- 【死磕ibatis】SqlMapClient 基本操作示例
前言:想要学习ibatis,我这里写了一些关于SqlMapClient 的具体例子,希望对你有帮助.话不多说,直接看例子. 例 1: 数据写入操作(insert, update, delete): s ...
- VScode 使用提示
vscode 配置xdebug参考 vscode配置phpxdebug 未完,待续!
- git 配置ssh
git 配置ssh 生成一个个人账号/邮箱的sshkey ssh-keygen -t rsa -C "youremail@yourcompany.com" -f ~/.ssh/XX ...
- 织梦seo
建站-->采集文章-->sitemap-->robots->百度提交链接(主推和自动结合)-->后续优化 http://jingyan.baidu.com/article ...
- 【转】gitlab CI流水线配置文件.gitlab-ci.yml详解
目录 GitLab CI流水线配置文件.gitlab-ci.yml详解 实验环境 GitLab CI介绍 .gitlab-ci.yml 配置参数 参数详解 script image services ...
- 路由器逆向分析------firmware-mod-kit工具安装和使用说明
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/68061957 一.firmware-mod-kit工具的安装 firmware-m ...
- 详解 WebRTC 传输安全机制:一文读懂 DTLS 协议
作者|进学 审校|泰一 DTLS (Datagram Transport Layer Security) 基于 UDP 场景下数据包可能丢失或重新排序的现实情况下,为 UDP 定制和改进的 TLS 协 ...
- 【python】Leetcode每日一题-删除有序数组中的重复项
[python]Leetcode每日一题-删除有序数组中的重复项 [题目描述] 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使每个元素 最多出现一次 ,返回删除后数组的新长度. 不要 ...
- $ git push -u origin master 报错
输入$ git push -u origin master报permission denied(publickey) 如下: 原因是没有与gitee上的账号成功建立密钥对,所以需要配对密钥 解决方法( ...
- FFmpeg应用实践之命令查询
0. 前言 FFmpeg 中常用的工具有三个,分别是多媒体编解码工具ffmpeg.多媒体内容分析工具ffprobe和多媒体播放器ffplay.本文介绍的指令都是与编解码工具 ffmpeg 相关的. 学 ...