\(\mathcal{Description}\)

  有 \(n\) 个人掉进了深度为 \(h\) 的坑里,第 \(i\) 个人的肩高为 \(a_i\),臂长为 \(b_i\)。设当前坑里人的集合为 \(S\),第 \(i\) 人能逃生,当且仅当 \(\sum_{j\in S}a_j+b_i\ge h\)。求最多逃生人数。

  \(n\le2\times10^5\)。

\(\mathcal{Solution}\)

  考虑在最优情况下,相邻两个逃生的人,设其肩高臂长分别为 \((a,b),(p,q)\),未逃生者肩高之和 \(s\),则现在有:

\[\begin{cases}
s+b\ge h\\
s-a+q\ge h
\end{cases}
\]

  尝试交换两人顺序:

\[\begin{cases}
s+q\ge h\\
s-p+b\ge h
\end{cases}
\]

  不难发现 \(b-p\le q-a\) 时,前式可推出后时,可结合题意理解为“前者逃生,考虑为后者手变短,那么后者手越长越优”。依此排序。

  此后,顺序扫一遍,若当前人能逃生直接逃生。但为保证最优,我们需要最大化坑里人的 \(\sum a_i\)。这时考虑一个反悔操作——用逃生的一个人来替换当前这个人。显然由于贪心的排序,替换一定成立,只要逃生的人的肩高大于当前人,替换就会优化答案,所以直接抓肩高最大的人回坑里就好。

  复杂度 \(\mathcal O(n\log n)\)。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio>
#include <algorithm> typedef long long LL; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} const int MAXN = 2e5;
int n, H;
LL sum;
std::priority_queue<int> heap; struct Person {
int a, b;
inline void read () { a = rint (), b = rint (); }
inline bool operator < ( const Person t ) const { return b - t.a < t.b - a; }
} per[MAXN + 5]; int main () {
freopen ( "escape.in", "r", stdin );
freopen ( "escape.out", "w", stdout );
n = rint ();
for ( int i = 1; i <= n; ++ i ) per[i].read (), sum += per[i].a;
H = rint ();
int ans = 0;
std::sort ( per + 1, per + n + 1 );
for ( int i = 1; i <= n; ++ i ) {
heap.push ( per[i].a );
if ( sum + per[i].b >= H ) ++ ans;
else sum += heap.top (), heap.pop ();
sum -= per[i].a;
}
printf ( "%d\n", ans );
return 0;
}

\(\mathcal{Details}\)

  也是够勇的,不拍就过了这道智慧贪心题 owo!

Solution -「LOCAL」逃生的更多相关文章

  1. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  2. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  3. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  4. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  5. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  6. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  7. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  8. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  9. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

随机推荐

  1. webSocket 使用 HttpSession 的数据配置与写法

    1.前言 webSoket 无法获取 HttpSession  ,使用就更谈不上了 !!! 2解决过程 使用   configurator  注入即可 (1) 配置一个类 1 package cn.c ...

  2. Node.js 模块之【passport】

    什么是passport passport是Nodejs的一个中间键,用于用户名和密码的验证登陆.在项目中我用它来验证后台用户名和密码,但passport更多用在第三方登录,功能强大. 安装与配置 本项 ...

  3. Linux上天之路系列目录

    Linux上天之路系列目录 Linux上天之路(一)之Linux前世今生 Linux上天之路(二)之Linux安装 Linux上天之路(三)之Linux系统目录 Linux上天之路(四)之Linux界 ...

  4. Kubernetes 中的 Pod 安全策略

    来源:伪架构师作者:崔秀龙很多人分不清 SecurityContext 和 PodSecurityPolicy 这两个关键字的差别,其实很简单:•SecurityContext 是 Pod 中的一个字 ...

  5. powershell基础知识

    基本命令 我们先从最基本的命令入手,Windows Powershell命令中get类命令是很庞大的一个命令工具集合,而且get类命令也是Powershell中占比最大的. 1.Get-Alias G ...

  6. Apache Shiro反序列化远程代码执行复现

    最近也是看shiro漏洞比较多,所以自己也在本地复现了一下,拿出来与大家一起分享 0x00 关于Apache Shiro Apache shiro是一个Java安全框架,提供了认证.授权.加密和会话管 ...

  7. Python与Javascript相互调用超详细讲解(2022年1月最新)(一)基本原理 Part 1 - 通过子进程和进程间通信(IPC)

    TL; DR 适用于: python和javascript的runtime(基本特指cpython[不是cython!]和Node.js)都装好了 副语言用了一些复杂的包(例如python用了nump ...

  8. CTF-sql-sql约束注入

    create table user( id int not null auto_increment, username varchar(30) not null, password varchar(3 ...

  9. Spring系列4:依赖注入的2种方式

    本文内容 基于构造器的依赖注入 基于setter的依赖注入 基于构造器的依赖注入 案例 定义2个简单的bean类,BeanOne 和 BeanTwo,前者依赖后者. package com.crab. ...

  10. Cesium参考资源

    Reference resources cesium官网 cesium 下载 cesium官方文档 APIs cesium-workshop github cesium 官方示例 cesium git ...