karatsuba乘法

Karatsuba乘法是一种快速乘法。此算法在1960年由Anatolii Alexeevitch Karatsuba 提出,并于1962年得以发表。[1] 此算法主要用于两个大数相乘。普通乘法的复杂度是n2,而Karatsuba算法的复杂度仅为3nlog3≈3n1.585(log3是以2为底的)[2] 。

算法描述

编辑

步骤简介

Karatsuba算法主要应用于两个大数的相乘,原理是将大数分成两段后变成较小的数位,然后做3次乘法,并附带少量的加法操作和移位操作。
现有两个大数,x,y。
首先将x,y分别拆开成为两部分,可得x1,x0,y1,y0。他们的关系如下:
x = x1 * 10m + x0;
y = y1 * 10m + y0。其中m为正整数,m < n,且x0,y0 小于 10m。
那么 xy = (x1 * 10m + x0)(y1 * 10m +
y0)
=z2 * 102m + z1 * 10m +
z0,其中:
z2 = x1 * y1;
z1 = x1 * y0 + x0 * y1;
z0 = x0 * y0。
此步骤共需4次乘法,但是由Karatsuba改进以后仅需要3次乘法。因为:
z1 = x1 * y0+ x0 * y1
z1 = (x1 + x0) * (y1 + y0) - x1 * y1 - x0 * y0,
故z1 便可以由一次乘法及加减法得到。

实例展示

设x = 12345,y=6789,令m=3。那么有:
12345 = 12 * 1000 + 345;
6789 = 6 * 1000 + 789。
下面计算:
z2 = 12 * 6 = 72;
z0 = 345 * 789 = 272205;
z1 = (12 + 345) * (6 + 789) - z2 - z0 = 11538。
然后我们按照移位公式(xy = z2 * 10 + z1 * 10 + z0)可得:
xy = 72 * 10002 + 11538 * 1000 + 272205 = 83810205。

效率分析

编辑

对于给定的n位大数,算法的复杂度不超过3nlog3 ≈ 3n1.585。

伪代码描述

编辑

1
2
3
4
5
6
7
8
9
10
11
12
13
procedurekaratsuba(num1,num2)
if(num1<10)or(num2<10)
returnnum1*num2
/*calculatesthesizeofthenumbers*/
m=max(size(num1),size(num2))
m2=m/2
high1,low1=split_at(num1,m2)
high2,low2=split_at(num2,m2)
/*3callsmadetonumbersapproximatelyhalfthesize*/
z0=karatsuba(low1,low2)
z1=karatsuba((low1+high1),(low2+high2))
z2=karatsuba(high1,high2)
return(z2*10^(m))+((z1-z2-z0)*10^(m/2))+(z0)

karatsuba乘法的更多相关文章

  1. 大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  2. Karatsuba乘法--实现大数相乘

    Karatsuba乘法 Karatsuba乘法是一种快速乘法.此算法在1960年由Anatolii Alexeevitch Karatsuba 提出,并于1962年得以发表.此算法主要用于两个大数相乘 ...

  3. [转]大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  4. 优化 Karatsuba 乘法(老物)

    虽然写好了我自己用的a*启发函数但还是有些不尽人意,如果通过数学分析确定不出问题可以工作了的话应该就会发出来了 // Karatsuba 递归式距离推导 // h(x) = f(x) * g(x):/ ...

  5. [MIT6.006] 11. Integer Arithmetic, Karatsuba Multiplication 整型算术,Karatsuba乘法

    很多人不喜欢√2的表达,他们认为它不是一个数. 一.卡塔兰数 Catalan numbers 在数方面上,有个著名的数叫卡塔兰数 Catalan numbers,它是组合数学中一个常在各种计数问题中出 ...

  6. 数据结构与算法 Big O 备忘录与现实

    不论今天的计算机技术变化,新技术的出现,所有都是来自数据结构与算法基础.我们需要温故而知新.        算法.架构.策略.机器学习之间的关系.在过往和技术人员交流时,很多人对算法和架构之间的关系感 ...

  7. 大整数相乘问题总结以及Java实现

    最近在跟coursera上斯坦福大学的算法专项课,其中开篇提到了两个整数相乘的问题,其中最简单的方法就是模拟我们小学的整数乘法,可想而知这不是比较好的算法,这门课可以说非常棒,带领我们不断探索更优的算 ...

  8. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  9. 《python解释器源码剖析》第2章--python中的int对象

    2.0 序 在所有的python内建对象中,整数对象是最简单的对象.从对python对象机制的剖析来看,整数对象是一个非常好的切入点.那么下面就开始剖析整数对象的实现机制 2.1 初识PyLongOb ...

随机推荐

  1. stm32电机控制之控制两路直流电机!看完你会了吗

    手头上有一个差分驱动的小车,使用两个直流电机驱动,要实现小车的在给定速度下运动,完成直线行驶,转向,加速,刹车等复杂运动. 使用的电机是12v供电的直流电机,带编码器反馈,这样就可以采用闭环速度控制, ...

  2. Spring Cloud Alibaba 使用Nacos作为配置管理中心

    为什么需要配置中心? 动态配置管理是 Nacos 的三大功能之一,通过动态配置服务,我们可以在所有环境中以集中和动态的方式管理所有应用程序或服务的配置信息. 动态配置中心可以实现配置更新时无需重新部署 ...

  3. SpringCloud微服务实战——搭建企业级开发框架(十一):集成OpenFeign用于微服务间调用

    作为Spring Cloud的子项目之一,Spring Cloud OpenFeign以将OpenFeign集成到Spring Boot应用中的方式,为微服务架构下服务之间的调用提供了解决方案.首先, ...

  4. (总结)Linux下su与su -命令的本质(转)

    转载地址:http://www.ha97.com/4001.html 本人以前一直习惯直接使用root,很少使用su,前几天才发现su与su -命令是有着本质区别的! 大部分Linux发行版的默认账户 ...

  5. python write() argument must be str, not bytes

    python pickle from __future__ import absolute_import from __future__ import division from __future__ ...

  6. hdu 5185 Equation(分析+DP)

    题意: Gorwin is very interested in equations. Nowadays she gets an equation like thisx1+x2+x3+⋯+xn=n, ...

  7. Win10自动备份oracle数据库

    1.环境 操作系统:win10 数据库: 2.创建backup.bat文件 [ @echo offset name=%date:~0,4%%date:~5,2%%date:~8,2%set backu ...

  8. upload-labs通关攻略(全)

    upload-labs通关攻略 upload-labs是练习文件上传很好的一个靶场,建议把upload-labs关卡全部练习一遍 1.下载安装 下载地址 链接:https://pan.baidu.co ...

  9. Linux&C open creat read write lseek 函数用法总结

    一:五个函数的参数以及返回值. 函数                                 参数                      返回值     open (文件名,打开方式以及读 ...

  10. VSCode 微信小程序 开发环境配置 详细教程

    本博客已暂停更新,需要请转新博客http://www.whbwiki.com/231.html 配置 VsCode 微信小程序开发环境并非不用官方的 微信小程序开发者工具 ,而是两者配合适用,可以极大 ...