Redis的并发竞争问题,主要是发生在并发写竞争。

考虑到redis没有像db中的sql语句,update val = val + 10 where ...,无法使用这种方式进行对数据的更新。

假如有某个key = "price",  value值为10,现在想把value值进行+10操作。正常逻辑下,就是先把数据key为price的值读回来,加上10,再把值给设置回去。

如果只有一个连接的情况下,这种方式没有问题,可以工作得很好,但如果有两个连接时,两个连接同时想对还price进行+10操作,就可能会出现问题了。

例如:两个连接同时对price进行写操作,同时加10,最终结果我们知道,应该为30才是正确。

考虑到一种情况:

T1时刻,连接1将price读出,目标设置的数据为10+10 = 20。

T2时刻,连接2也将数据读出,也是为10,目标设置为20。

T3时刻,连接1将price设置为20。

T4时刻,连接2也将price设置为20,则最终结果是一个错误值20。

如何解决redis的并发竞争key问题呢?下面给到3个Redis并发竞争的解决方案。

第一种方案:分布式锁+时间戳

1.整体技术方案

这种情况,主要是准备一个分布式锁,大家去抢锁,抢到锁就做set操作。

加锁的目的实际上就是把并行读写改成串行读写的方式,从而来避免资源竞争。

2.Redis分布式锁的实现

主要用到的redis函数是setnx()

用SETNX实现分布式锁,也是内置的锁

利用SETNX非常简单地实现分布式锁。例如:某客户端要获得一个名字youzhi的锁,客户端使用下面的命令进行获取:

SETNX lock.youzhi<current Unix time + lock timeout + 1>

如返回1,则该客户端获得锁,把lock.youzhi的键值设置为时间值表示该键已被锁定,该客户端最后可以通过DEL lock.foo来释放该锁。
如返回0,表明该锁已被其他客户端取得,这时我们可以先返回或进行重试等对方完成或等待锁超时。

3.时间戳

由于上面举的例子,要求key的操作需要顺序执行,所以需要保存一个时间戳判断set顺序。

系统A key 1 {ValueA 7:00}

系统B key 1 { ValueB 7:05}

假设系统B先抢到锁,将key1设置为{ValueB 7:05}。接下来系统A抢到锁,发现自己的key1的时间戳早于缓存中的时间戳(7:00<7:05),那就不做set操作了。

当然,分布式锁可以基于很多种方式实现,比如zookeeper、redis等,不管哪种方式实现,基本原理是不变的:用一个状态值表示锁,对锁的占用和释放通过状态值来标识。

第二种方案:使用乐观锁的方式进行解决(成本较低,非阻塞,性能较高)

乐观锁(redis 的命令 watch):
当执行多键值事务操作时,Redis 不仅要求这些键值需要落在同一个 Redis 实例上,还要求落在同一个 slot 上,所以 redis 的事务比较鸡肋
不过可以想办法遵循 redis 内部的分片算法把设计到的所有 key 分到同一个 slot。

如何用乐观锁方式进行解决?

本质上是假设不会进行冲突,使用redis的命令watch进行构造条件。伪代码如下:

watch price

get price $price

$price = $price + 10

multi

set price $price

exec

解释一下:

watch这里表示监控该key值,后面的事务是有条件的执行,如果从watch的exec语句执行时,watch的key对应的value值被修改了,则事务不会执行。

同样考虑刚刚的场景

T1时刻,连接1对price进行watch,读出price值为10,目标计算为20;

T2时刻,连接2对price进行watch,读出price值为10,目标计算为20;

T3时刻,连接2将目标值为20写到redis中,执行事务,事务返回成功。

T4时刻,连接1也对price进行写操作,执行事务时,由于之前已经watch了price,price在T1至T4之间已经被修改过了,所以事务执行失败。

综上,该乐观锁机制可以简单明了的解决了写冲突的问题。

又问:如果多个写操作同时过来,100个写操作同时watch,则最终只会有一个成功,99个执行失败,何解?

如果同时进行有多个请求进行写操作,例如同一时刻有100个请求过来,那么只会有一个最终成功,其余99个全部会失败,效率不高。

而且从业务层面,有些是不可接受的场景。例如:大家同时去抢一个红包,如果背后也是用乐观锁的机制去处理,那每个请求后都只有一个人成功打开红包,这对业务是不可忍受的。

在这种情况下,如果想让总体效率最大化,可以采用排队的机制进行。

将所有需要对同一个key的请求进行入队操作,然后用一个消费者线程从队头依次读出请求,并对相应的key进行操作。

这样对于同一个key的所有请求就都是顺序访问,正常逻辑下则不会有写失败的情况下产生 。从而最大化写逻辑的总体效率。

第三种方案:利用消息队列

在并发量过大的情况下,可以通过消息中间件进行处理,把并行读写进行串行化。

把Redis.set操作放在队列中使其串行化,必须的一个一个执行。

这种方式在一些高并发的场景中算是一种通用的解决方案。

以上是本文的全部内容,希望对大家的学习有帮助,也希望大家多多支持php自学中心 

Redis的并发竞争问题,你用哪些方案来解决?的更多相关文章

  1. Redis的并发竞争问题的解决方案总结

    什么是Redis的并发竞争问题 Redis的并发竞争问题,主要是发生在并发写竞争. 考虑到redis没有像db中的sql语句,update val = val + 10 where ...,无法使用这 ...

  2. 12.redis 的并发竞争问题是什么?如何解决这个问题?了解 redis 事务的 CAS 方案吗?

    作者:中华石杉 面试题 redis 的并发竞争问题是什么?如何解决这个问题?了解 redis 事务的 CAS 方案吗? 面试官心理分析 这个也是线上非常常见的一个问题,就是多客户端同时并发写一个 ke ...

  3. 关于redis的几件小事(九)redis的并发竞争问题

    1.什么是并发竞争 就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 2.怎么解决 采 ...

  4. 如何解决redis的并发竞争问题?

    这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 而且 ...

  5. redis的并发竞争问题是什么?如何解决这个问题?

    这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 而且 ...

  6. Redis的并发竞争问题

    问题描述:多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 一个key的值是1,本来按顺序 ...

  7. Redis缓存穿透、缓存雪崩、redis并发问题 并发竞争key的解决方案 (阿里)

    阿里的人问我 缓存雪崩(大量数据在同一时间过期了)了如何处理,缓存击穿了如何处理,回答的很烂,做了总结: 把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数 ...

  8. 高并发架构系列:Redis并发竞争key的解决方案详解

    https://blog.csdn.net/ChenRui_yz/article/details/85096418 https://blog.csdn.net/ChenRui_yz/article/l ...

  9. 分布式-技术专区-Redis并发竞争key的解决方案详解

    Redis缓存的高性能有目共睹,应用的场景也是非常广泛,但是在高并发的场景下,也会出现问题:缓存击穿.缓存雪崩.缓存和数据一致性,以及今天要谈到的缓存并发竞争.这里的并发指的是多个redis的clie ...

随机推荐

  1. visual studio code 快捷键-(转自 浅笑千寻)

    Visual Studio Code之常备快捷键 官方快捷键大全:https://code.visualstudio.com/docs/customization/keybindings Visual ...

  2. static在C/C++中的作用-(转自华山大师兄)

    1.先来介绍它的第一条也是最重要的一条:隐藏.(static函数,static变量均可) 当同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性.举例来说明.同时编译两个源文件 ...

  3. 删除win10系统下文件默认打开方式的关联-win10配置

    现象 文件默认打开方式错误 链接到老的打开软件 无法图形化重定义关联软件 文件图标关联异常 1. 打开注册表编辑器 win + R regedit 2. 修改注册表 找到以下注册表路径,找到指定的文件 ...

  4. [算法] 数据结构 splay(伸展树)解析

    前言 splay学了已经很久了,只不过一直没有总结,鸽了好久来写一篇总结. 先介绍 splay:亦称伸展树,为二叉搜索树的一种,部分操作能在 \(O( \log n)\) 内完成,如插入.查找.删除. ...

  5. Linux - fuser 命令

    前言 之前连公司堡垒机的时候发现连不上,找运维排查是建立的链接数太多,很多超时链接没有断掉,导致不能再创建链接 此时,需要手动断开用户终端链接,然后百度搜到 fuser 可以断开用户终端链接 命令作用 ...

  6. linux ( crontab 定时任务命令)

    linux ( crontab 定时任务命令)    crontab 定时任务命令 linux 系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工 ...

  7. BERT模型的OneFlow实现

    BERT模型的OneFlow实现 模型概述 BERT(Bidirectional Encoder Representations from Transformers)是NLP领域的一种预训练模型.本案 ...

  8. Pytorch和CNN图像分类

    Pytorch和CNN图像分类 PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速 ...

  9. python_selenium 之logging模块入门及调用实战

    一.logging模块是什么? 是Python内置的标准模块,主要用于输出运行日志 二.日志的作用 日志是代码的必要组成部分 记录日志能显示程序当前运行状态 出问题后定位当时问题 三.python日志 ...

  10. windows 7系统安装与配置Tomcat服务器环境

    windows 7系统安装与配置Tomcat服务器环境 学习了一个月的java基础,终于要迈向java web领域.学习java web开发就离不开服务器的支持,由于本人是菜鸟,只好求助度娘谷哥.在此 ...