Codeforces 1113C: Sasha and a Bit of Relax(位运算|异或)
time limit per test: 1 second
memory limit per test: 256 megabytes
input: standard input
output: standard output
Sasha likes programming. Once, during a very long contest, Sasha decided that he was a bit tired and needed to relax. So he did. But since Sasha isn’t an ordinary guy, he prefers to relax unusually. During leisure time Sasha likes to upsolve unsolved problems because upsolving is very useful.
Therefore, Sasha decided to upsolve the following problem:
You have an array aaa with nnn integers. You need to count the number of funny pairs (l,r) (l≤r)(l,r)\ (l≤r)(l,r) (l≤r). To check if a pair (l,r)(l,r)(l,r) is a funny pair, take mid=l+r−12mid=\frac{l+r-1}{2}mid=2l+r−1, then if r−l+1r−l+1r−l+1 is an even number and al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ara_{l} \oplus a_{l+1} \oplus \ldots \oplus a_{m i d}=a_{m i d+1} \oplus a_{m i d+2} \oplus \ldots \oplus a_{r}al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ar, then the pair is funny. In other words, ⊕⊕⊕ of elements of the left half of the subarray from lll to rrr should be equal to ⊕⊕⊕ of elements of the right half. Note that ⊕⊕⊕ denotes the bitwise XOR operation.
It is time to continue solving the contest, so Sasha asked you to solve this task.
Input
The first line contains one integer n (2≤n≤3⋅105)n\ (2≤n≤3⋅10^5)n (2≤n≤3⋅105) — the size of the array.
The second line contains nnn integers a1,a2,…,an(0≤ai<220)a_{1}, a_{2}, \dots, a_{n}\left(0 \leq a_{i}<2^{20}\right)a1,a2,…,an(0≤ai<220) — array itself.
Output
Print one integer — the number of funny pairs. You should consider only pairs where r−l+1r−l+1r−l+1 is even number.
Examples
input
5
1 2 3 4 5
output
1
input
6
3 2 2 3 7 6
output
3
input
3
42 4 2
output
0
Note
Be as cool as Sasha, upsolve problems!
In the first example, the only funny pair is (2,5)(2,5)(2,5), as 2⊕3=4⊕5=12 \oplus 3=4 \oplus 5=12⊕3=4⊕5=1.
In the second example, funny pairs are (2,3)(2,3)(2,3), (1,4)(1,4)(1,4), and (3,6)(3,6)(3,6).
In the third example, there are no funny pairs.
题意
有nnn个数,对于偶数长度的区间[l,r][l,r][l,r],mid=l+r−12mid=\frac{l+r-1}{2}mid=2l+r−1,要求[l,mid],[mid+1,r][l,mid],[mid+1,r][l,mid],[mid+1,r]两个区间内的数的异或值相等,问有多少个这样的区间
Solve
利用异或的性质:出现偶数次的数异或值为000
如果[l,mid],[mid+1,r][l,mid],[mid+1,r][l,mid],[mid+1,r]区间数的异或值相等,则[l,r][l,r][l,r]区间的数的异或值为000
可以推出:如果当前位置的异或值出现过,并且之前出现的位置与当前出现位置下标的奇偶性相同,那么这两个位置之间的区域就是题目中要求的funny pairs
Code
/*************************************************************************
> File Name: C.cpp
> Author: WZY
> Created Time: 2019年02月17日 19:59:36
************************************************************************/
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
const double E=exp(1);
const int maxn=1e6+10;
const int mod=1e9+7;
using namespace std;
ll sum[1<<20][2];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
ll ans=0;
ll x;
ll res=0;
sum[0][0]=1;
for(int i=1;i<=n;i++)
{
cin>>x;
res^=x;
ans+=sum[res][i&1];
sum[res][i&1]++;
}
cout<<ans<<endl;
return 0;
}
Codeforces 1113C: Sasha and a Bit of Relax(位运算|异或)的更多相关文章
- Sasha and a Bit of Relax(前缀异或和+二维数组+思维)
Sasha likes programming. Once, during a very long contest, Sasha decided that he was a bit tired and ...
- Codeforces Round #443 (Div. 1) D. Magic Breeding 位运算
D. Magic Breeding link http://codeforces.com/contest/878/problem/D description Nikita and Sasha play ...
- Codeforces 631 (Div. 2) D. Dreamoon Likes Sequences 位运算^ 组合数 递推
https://codeforces.com/contest/1330/problem/D 给出d,m, 找到一个a数组,满足以下要求: a数组的长度为n,n≥1; 1≤a1<a2<⋯&l ...
- Codeforces 620E New Year Tree(线段树+位运算)
题目链接 New Year Tree 考虑到$ck <= 60$,那么用位运算统计颜色种数 对于每个点,重新标号并算出他对应的进和出的时间,然后区间更新+查询. 用线段树来维护. #includ ...
- Codeforces Round #499 (Div. 2) F. Mars rover_dfs_位运算
题解: 首先,我们可以用 dfsdfsdfs 在 O(n)O(n)O(n) 的时间复杂度求出初始状态每个点的权值. 不难发现,一个叶子节点权值的取反会导致根节点的权值取反当且仅当从该叶子节点到根节点这 ...
- Codeforces Round #443 (Div. 2) C: Short Program - 位运算
传送门 题目大意: 输入给出一串位运算,输出一个步数小于等于5的方案,正确即可,不唯一. 题目分析: 英文题的理解真的是各种误差,从头到尾都以为解是唯一的. 根据位运算的性质可以知道: 一连串的位运算 ...
- codeforces 922 B. Magic Forest(枚举、位运算(异或))
题目链接:点击打开链接 Imp is in a magic forest, where xorangles grow (wut?) A xorangle of order n is such a no ...
- Codeforces Round #626 (Div. 2) D. Present(位运算)
题意: 求n个数中两两和的异或. 思路: 逐位考虑,第k位只需考虑0~k-1位,可通过&(2k+1-1)得到一组新数. 将新数排序,当两数和在[2k,2k+1)和[2k+1+2k,2k+2)之 ...
- Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax(思维题)
Problem Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem ...
随机推荐
- 【模板】无源汇有上下界可行流(网络流)/ZOJ2314
先导知识 网络最大流 题目链接 https://vjudge.net/problem/ZOJ-2314 题目大意 多组数据,第一行为数据组数 \(T\). 对于每一组数据,第一行为 \(n,m\) 表 ...
- 详解 Rainbond Ingress 泛解析域名机制
Rainbond 作为一款云原生应用管理平台,天生带有引导南北向网络流量的分布式网关 rbd-gateway.区别于一般的 Ingress 配置中,用户需要自行定义域名的使用体验,Rainbond 的 ...
- addict, address, adequate.四级
addict addiction – a biopsychosocial [生物社会心理学的 bio-psycho-social] disorder characterized by persiste ...
- Linux基础命令---mysqladmin数据库管理工具
mysqladmin mysqladmin是mysql数据库的管理工具,可以控制.查看.修改数据库服务器的配置和状态. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedor ...
- 如何在linux 上配置NTP 时间同步?
故障现象: 有些应用场景,对时间同步的要求严格,需要用到NTP同步,如何在linux上配置NTP时间同步? 解决方案: 在linux 上配置NTP 时间同步,具休操作步骤,整理如下: 1.安装软件包( ...
- 【Linux】【Services】【SaaS】Docker+kubernetes(2. 配置NTP服务chrony)
1. 简介 1.1. 这次使用另外一个轻量级的NTP服务,chrony.这是openstack推荐使用的ntp服务. 1.2. 官方网站:https://chrony.tuxfamily.org/ 2 ...
- 【Linux】【Services】【SaaS】Docker+kubernetes(1. 基础概念与架构图)
1.简介 1.1. 背景:公司正在进行敏捷开发环境的搭建,以取代传统的架构,好处大大的,我就不赘述了.公司原来负责这个项目的同事要转组,我只好交给另外同事继续,但是为了防止同样的事情,我也需要深入了 ...
- 测试JDBCUtils的重用性
package cn.itcast.jdbc;import cn.itcast.util.JDBCUtils;import java.sql.*;import java.util.Properties ...
- Linkerd Service Mesh 服务配置文件规范
服务配置文件 为 Linkerd 提供有关服务的附加信息. 以下是可以使用服务配置文件完成的所有操作的参考. 系列 中文手册(https://linkerd.hacker-linner.com) Sp ...
- python3约瑟夫环问题
问题描述:n个人围成一个圈,从第一个人开始数1,数到第k个出局,然后下一个人继续从1数,求出局人编号 思路:将所有人编号放到数组里,一个人出局后,下一个人加上k对数组长度求余,得出下一个要删除的编号. ...