简介

Floyd算法算是最简单的算法,没有之一。

其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] };

map[i , j]表示 i 到 j 的最短距离,K是穷举 i , j 的断点,map[n , n]初值应该为0,或者按照题目意思来做。

当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i , k]这条路。

算法步骤

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录

所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,

G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

具体参考这篇文章

https://www.cnblogs.com/wangyuliang/p/9216365.html

C++实现

#include<iostream>
using namespace std; const int inf = 0x7fffff - 1;
int e[10][10];
int n, m; int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)e[i][j] = 0;
else e[i][j] = inf;
}
}
int src, dst, val;
for (int i = 0; i < m; i++) {
cin >> src >> dst >> val;
e[src][dst] = val;
} //Floyd-Warshall算法核心语句
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
} for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%5d", e[i][j]);
}
cout << endl;
} return 0;
} /*
4 8
0 1 2
0 2 6
0 3 4
1 2 3
2 0 7
2 3 1
3 0 5
3 2 12
*/

百练-Stockbroker Grapevine

  • 总时间限制:

    1000ms

  • 内存限制:

    65536kB

  • 描述

    Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.Unfortunately for you, stockbrokers only trust information coming from their “Trusted sources” This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

  • 输入

    Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a ‘1’ means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

  • 输出

    For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes. It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message “disjoint”. Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

  • 样例输入

    3
    2 2 4 3 5
    2 1 2 3 6
    2 1 2 2 2
    5
    3 4 4 2 8 5 3
    1 5 8
    4 1 6 4 10 2 7 5 2
    0
    2 2 5 1 5
    0
  • 样例输出

    3 2
    3 10

C++实现

#include<iostream>
#include<vector>
using namespace std;
const int inf = 0x7ffffff;
int e[101][101];
int main() {
int n;
while (cin >> n) {
if (n == 0)break;
int ans = 0, pos = 0;
fill(e[0], e[0] + 100 * 100, inf);
for (int i = 0; i <= 100; i++) {
e[i][i] = 0;
}
int dst, val;
for (int i = 1; i <= n; i++) { //录入数字,作为初始化
int num;
cin >> num;
for (int j = 0; j < num; j++) {
cin >> dst >> val;
e[i][dst] = val;
}
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
}
int minn = inf;
for (int i = 1; i <= n; i++) {
ans = 0;
for (int j = 1; j <= n; j++) {
ans = ans > e[i][j] ? ans : e[i][j];
}
if (ans < minn) {
minn = ans;
pos = i;
}
}
cout << pos << " " << minn << endl;
}
return 0;
}

Floyd算法C++实现与模板题应用的更多相关文章

  1. [置顶] 小白学习KM算法详细总结--附上模板题hdu2255

    KM算法是基于匈牙利算法求最大或最小权值的完备匹配 关于KM不知道看了多久,每次都不能完全理解,今天花了很久的时间做个总结,归纳以及结合别人的总结给出自己的理解,希望自己以后来看能一目了然,也希望对刚 ...

  2. 图的最短路径算法-- Floyd算法

    Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...

  3. 图论算法(二)最短路算法:Floyd算法!

    最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...

  4. HDU 1874 畅通工程续(模板题——Floyd算法)

    题目: 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰 ...

  5. POJ 1502 MPI Maelstrom(模板题——Floyd算法)

    题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...

  6. HDU 2544 最短路(模板题——Floyd算法)

    题目: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你 ...

  7. POJ 3041 匈牙利算法模板题

    一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...

  8. poj 1274 The Perfect Stall【匈牙利算法模板题】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 942 ...

  9. SPOJ RPLN (模板题)(ST算法)【RMQ】

    <题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客  >& ...

随机推荐

  1. Matplotlib 图表绘制工具学习笔记

    import numpy as np import matplotlib.pyplot as plt import pandas as pd arr1 = np.random.rand(10)#一维数 ...

  2. 二分图最小点覆盖构造方案+König定理证明

    前言 博主很笨 ,如有纰漏,欢迎在评论区指出讨论. 二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, ...

  3. 自己写的一个抢票加速的Python小程序源码分享-----纯属娱乐

    最近这段时间频频看到微信群里发什么 抢票加速,智行.携程.飞猪.美团,对于我这能坐客车就不坐火车的人来说,无所谓靠谱不靠谱 突发奇想的整理了下整个抢票加速的逻辑,写了这个小程序,代码很low,拒绝批评 ...

  4. 搭建Elasticsearch可视化界面 Kibana

    前言 每一个版本的es都有一个对应的Kibana版本,建议和es相同版本,官网地址: 点击进入下载地址 步骤 1.解压 tar -zxvf kibana-7.2.0-linux-x86_64 2.修改 ...

  5. 正月十五吃汤圆CountDownLatch

    CountDownLatch实际应用 今天是正月十五,给大家拜个晚年啦! 元宵节是中国传统节日,吃汤圆不能少啊,今天我们统计下"叫练"吃汤圆时间,并用代码模拟下叫练吃汤圆!其中用到 ...

  6. 翻译:《实用的 Python 编程》02_07_Objects

    目录 | 上一节 (2.6 列表推导式) | 下一节 (3 从程序组织) 2.7 对象 本节介绍有关 Python 内部对象模型的更多详细信息,并讨论一些与内存管理,拷贝和类型检查有关的问题. 赋值 ...

  7. macOS启动Kafka

    目录 kafka目录结构 先启动zookeeper 后启动kafka 创建topic 创建一个生产者 创建一个消费者 kafka目录结构 # kafka安装目录 /usr/local/Cellar/k ...

  8. 如何使用 Github Actions 自动抓取每日必应壁纸?

    如何白嫖 Github 服务器自动抓取必应搜索的每日壁纸呢? 如果你访问过必应搜索网站,那么你一定会被搜索页面的壁纸吸引,必应搜索的壁纸每日不同,自动更换,十分精美.这篇文章会介绍如何一步步分析出必应 ...

  9. c++:一个辅助类让内存泄漏现原形!

    前言 对于c++而言,如何查找内存泄漏是程序员亘古不变的话题:解决之道可谓花样繁多.因为最近要用到QT写程序,摆在我面前的第一个重要问题是内存防泄漏.如果能找到一个简单而行之有效的方法,对后续开发大有 ...

  10. Java 常见对象 02

    常见对象·String类 Scanner 的概述和方法介绍 * A:Scanner 的概述 * B:Scanner 的构造方法原理 * Scanner(InputStream source) * Sy ...