Floyd算法C++实现与模板题应用
简介
Floyd算法算是最简单的算法,没有之一。
其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] };
map[i , j]表示 i 到 j 的最短距离,K是穷举 i , j 的断点,map[n , n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i , k]这条路。
算法步骤
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录
所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,
G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
具体参考这篇文章
https://www.cnblogs.com/wangyuliang/p/9216365.html
C++实现
#include<iostream>
using namespace std;
const int inf = 0x7fffff - 1;
int e[10][10];
int n, m;
int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)e[i][j] = 0;
else e[i][j] = inf;
}
}
int src, dst, val;
for (int i = 0; i < m; i++) {
cin >> src >> dst >> val;
e[src][dst] = val;
}
//Floyd-Warshall算法核心语句
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%5d", e[i][j]);
}
cout << endl;
}
return 0;
}
/*
4 8
0 1 2
0 2 6
0 3 4
1 2 3
2 0 7
2 3 1
3 0 5
3 2 12
*/
百练-Stockbroker Grapevine
总时间限制:
1000ms
内存限制:
65536kB
描述
Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.Unfortunately for you, stockbrokers only trust information coming from their “Trusted sources” This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.
输入
Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a ‘1’ means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.
输出
For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes. It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message “disjoint”. Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.
样例输入
3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0
样例输出
3 2
3 10
C++实现
#include<iostream>
#include<vector>
using namespace std;
const int inf = 0x7ffffff;
int e[101][101];
int main() {
int n;
while (cin >> n) {
if (n == 0)break;
int ans = 0, pos = 0;
fill(e[0], e[0] + 100 * 100, inf);
for (int i = 0; i <= 100; i++) {
e[i][i] = 0;
}
int dst, val;
for (int i = 1; i <= n; i++) { //录入数字,作为初始化
int num;
cin >> num;
for (int j = 0; j < num; j++) {
cin >> dst >> val;
e[i][dst] = val;
}
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
}
int minn = inf;
for (int i = 1; i <= n; i++) {
ans = 0;
for (int j = 1; j <= n; j++) {
ans = ans > e[i][j] ? ans : e[i][j];
}
if (ans < minn) {
minn = ans;
pos = i;
}
}
cout << pos << " " << minn << endl;
}
return 0;
}
Floyd算法C++实现与模板题应用的更多相关文章
- [置顶] 小白学习KM算法详细总结--附上模板题hdu2255
KM算法是基于匈牙利算法求最大或最小权值的完备匹配 关于KM不知道看了多久,每次都不能完全理解,今天花了很久的时间做个总结,归纳以及结合别人的总结给出自己的理解,希望自己以后来看能一目了然,也希望对刚 ...
- 图的最短路径算法-- Floyd算法
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...
- 图论算法(二)最短路算法:Floyd算法!
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...
- HDU 1874 畅通工程续(模板题——Floyd算法)
题目: 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰 ...
- POJ 1502 MPI Maelstrom(模板题——Floyd算法)
题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...
- HDU 2544 最短路(模板题——Floyd算法)
题目: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你 ...
- POJ 3041 匈牙利算法模板题
一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...
- poj 1274 The Perfect Stall【匈牙利算法模板题】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20874 Accepted: 942 ...
- SPOJ RPLN (模板题)(ST算法)【RMQ】
<题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客 >& ...
随机推荐
- 消息中间件选型分析:从 Kafka 与 RabbitMQ 的对比看全局
本文转载自消息中间件选型分析:从 Kafka 与 RabbitMQ 的对比看全局 前言 消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布 ...
- Numpy初体验
目录 Numpy 一.简介 1.安装 2.特殊的导包 二.ndarray-多维数组对象 1.创建ndarray数组 1.1 array 1.2 arange 1.3 linspace 1.4 zero ...
- 一个页面中多个window.onload = function(){}冲突问题解决思路
转: 一个页面中多个window.onload = function(){}冲突问题解决思路 一个页面中多个window.onload = function(){}冲突问题解决思路 参考文章: (1) ...
- LeetCode-二叉搜索树的第k大节点
二叉搜索树的第k大节点 LeetCode-面试题54 需要充分了解二叉搜索树的性质. 利用中序遍历的思想,采用相反的思想:先遍历右节点再遍历左节点. /** * 给定一棵二叉搜索树,请找出其中第k大的 ...
- 创建一个scrapy爬虫框架的项目
第一步:打开pycharm,选择"terminal",如图所示: 第二步:在命令中端输入创建scrapy项目的命令:scrapy startproject demo (demo指的 ...
- Python 第三方登录 实现QQ 微信 微博 登录
本人写的AgentLogin,能快速返回QQ.微信.微博第三方用户名信息,主要用于快速登录 用 pip命令安装 pip install AgentLogin 用法 : 导入这个包 from Agent ...
- RPC基础以及造一个RPC的轮子需要注意些什么
RPC基础以及造一个RPC的轮子需要注意些什么 前言 rpc即远程过程调用,是分布式系统常用的通信方法.远程可以是在一台机器上的不同进程或在不同一个机器上的不同进程.rpc更看重速度,像调用本地方法一 ...
- C语言入门-mingw64安装+配置
OK,大家好,结合上期所说,本期让我们来配置编译器吧! 首先先下载mingw64离线包,官网下载慢,可以去群里下载,*.7z格式(有些同学可能没有解压软件,为了照顾这部分同学,笔者提供*.exe格式的 ...
- android分析之消息处理
前序:每个APP对应一个进程,该进程内有一个ActivityThread的线程,称为主线程(即UI主线程),此外,还有其他线程,这个再论. android的消息系统分析. 每个Thread只对应一个L ...
- malloc和free解析
malloc和free都是库函数,调用系统函数sbrk()来分配内存.除了分配可使用的内存以外,还分配了"控制"信息,这有点像内存池常用的手段.并且,分配的内存是连续的. 1. m ...