P4542-[ZJOI2011]营救皮卡丘【费用流,Floyd】
正题
题目链接:https://www.luogu.com.cn/problem/P4542
题目大意
给出\(n+1\)个点\(m\)条边的无向图,\(k\)个人开始在\(0\)号点,一个人进入\(i\)号点之前必须要有人经过\(i-1\)号点,求第一个人进入\(n\)号点时所有人的最短移动距离和。
\(1\leq n\leq 150,1\leq m\leq 2\times 10^4,1\leq k\leq 10\)
解题思路
显然不能建\(n\times n\)个点跑费用流,考虑怎么优化。
我们可以缩去一些中间路程,对于每个人只留下第一次到达该点的这些点,但是我们需要适当改变边权。
用\(Floyd\)求出\(d_{i,j}\)表示从\(i\)走到\(j\)且只走编号不大于\(max\{i,j\}\)的点的最短距离,这样因为如果一个人要走到\(j\),那么它一定是第一个到的,所以不能走过大于\(j\)的点,而前面的我们可以调整每个人的行走顺序来让前面的点都解锁后这个人再出发。
现在问题就变为了求\(k\)条权值和最小的路径覆盖所有点。其实不用上下界,因为是费用流,所以我们每个点拆成出/入点,然后入点向出点连一条\((1,-inf)\)和\((inf,0)\)的边(前面是流量,后面是费用)
这样如果一个点不走会多一堆费用,所以肯定会经过所有点。
这样点数就是\(O(n)\)级别了
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=310,inf=1e9;
struct node{
ll to,next,w,c;
}a[N*N*10];
ll n,m,k,s,t,ans,tot=1;
ll ls[N],f[N],mf[N],d[N][N],pre[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool spfa(){
memset(f,0x3f,sizeof(f));
f[s]=0;q.push(s);v[s]=1;mf[s]=inf;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])q.push(y),v[y]=1;
}
}
}
return f[t]<1e18;
}
void updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
memset(d,0x3f,sizeof(d));n++;
for(ll i=1;i<=m;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);x++;y++;
d[x][y]=min(d[x][y],w);
d[y][x]=min(d[y][x],w);
}
for(ll i=1;i<=n;i++)d[i][i]=0;
for(ll k=1;k<=n;k++)
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
if(k<i||k<j)d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
s=2*n+1;t=s+1;
addl(s,1,k,0);
for(ll i=1;i<=n;i++){
addl(i,i+n,1,-inf);
addl(i,i+n,inf,0);
addl(i+n,t,inf,0);
for(ll j=i+1;j<=n;j++)
if(d[i][j]<1e18)addl(i+n,j,inf,d[i][j]);
}
while(spfa())
updata();
printf("%lld\n",ans+n*inf);
return 0;
}
P4542-[ZJOI2011]营救皮卡丘【费用流,Floyd】的更多相关文章
- BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)
BZOJ 洛谷 首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路.可以用\(Floyd\)处理. 注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[ ...
- bzoj2324 [ZJOI2011]营救皮卡丘 费用流
[ZJOI2011]营救皮卡丘 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2653 Solved: 1101[Submit][Status][D ...
- 【BZOJ 2324】[ZJOI2011]营救皮卡丘 费用流
本人实行诱骗拐卖(利用自然分层与实际意义),正解拼接补充(充分利用最大流限制(不浪费任何一个走出去的机会而不是不浪费任何一个已有的流)与问题转换) #include <cstdio> #i ...
- P4542 [ZJOI2011]营救皮卡丘(Floyd+网络流)
P4542 [ZJOI2011]营救皮卡丘 乍一看似乎没啥题相似的 仔细一看,$N<=150$ 边又是双向边,似乎可以用Floyd搞 先跑一遍Floyd处理出$dis[i][j]$ 注意到走 ...
- 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流
原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...
- bzoj 2324 ZJOI 营救皮卡丘 费用流
题的大概意思就是给定一个无向图,边有权值,现在你有k个人在0点,要求走到n点,且满足 1:人们可以分头行动,可以停在某一点不走了 2:当你走到x时,前x-1个点必须全部走过(不同的人走过也行,即分两路 ...
- 洛咕P4542 [ZJOI2011]营救皮卡丘
套路题? 感觉讲不清,先写建图 把每个点拆成两个,A和B, S->Ai流量=1费用=0,Bi->T流量=1费用=0, Ai->Bj流量=1费用=ij最短路 还有一个特殊的s点,S-& ...
- P4542 [ZJOI2011]营救皮卡丘
题目链接 题意分析 我们仔细分析一下 发现题目要求用最多\(k\)条路径实现最小权覆盖 首先由于最小路径覆盖针对的是有向图 但是这是一个无向图 所以我们面向对象编程 我们维护一个数组\(d[i][j] ...
- bzoj 2324 [ZJOI2011]营救皮卡丘(floyd,费用流)
2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1777 Solved: 712[Submit][Stat ...
- BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )
昨晚写的题...补发一下题解... 把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd) S->0(K, 0), S->xi(1 ...
随机推荐
- mongodb+docker数据卷实现数据持久化
# 拉取镜像docker pull mongo:4.0.22# 启动容器,挂载本地目录 docker run -itd --name mongo -p 27017:27017 -v $PWD/mong ...
- 图解Java 垃圾回收机制
摘要: Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区.关于对象 ...
- 线程池ExecutorService的使用
转载自: 海子 Java并发编程:线程池的使用 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短 ...
- Spring第一课:配置文件及IOC引入(一)
Spring最核心的特点就是控制反转:(IOC)和面向切面(AOP) 首先作为一个Spring的项目需要导入的四个核心包,一个依赖: 四核心:core.context.beans.expression ...
- ProjectEuler 004题
1 #include<iostream> 2 using namespace std; 3 4 int main() { 5 bool isPalindromic (int num); 6 ...
- JavaSE基础之Java中的数据类型
基本数据类型:8个 整数类型(4):byte short int long 浮点类型(2):float double 字符类型:char 布尔类型:boolean 引用数据类型:3个 数组 类:cla ...
- Onenote实现OCR识别图片
OCR识别推荐两个软件: 1. Tesseract:一个开源的,由谷歌维护的OCR软件. 2. Onenote:微软Office附带或者可以自己独立安装. 3. O ...
- Linux上使用设置printf显示的颜色
我们经常看到别的屏幕五颜六色的很是羡慕,看着很炫是吧.其实我们也可以自己做一个简单的修改,是我们的显示结果也呈现出不同的颜色.shell脚本可能设置的比较多,但是我们平常使用C语言却很少设置它的颜色, ...
- 不写注释的程序员-Models
Models 不写注释的程序员-Models # This is an auto-generated Django model module. # You'll have to do the foll ...
- 动态拼接表达式——Expression
我们在项目中会遇到以下查询需求吗? 比如需要查询出满足以下条件的会员: 条件组一:30-40岁的男性会员 条件组二:20-30岁的女性会员 条件组三:60-80岁性别未知的会员 条件组内是并且关系,但 ...