正题

题目链接:https://www.luogu.com.cn/problem/P4542


题目大意

给出\(n+1\)个点\(m\)条边的无向图,\(k\)个人开始在\(0\)号点,一个人进入\(i\)号点之前必须要有人经过\(i-1\)号点,求第一个人进入\(n\)号点时所有人的最短移动距离和。

\(1\leq n\leq 150,1\leq m\leq 2\times 10^4,1\leq k\leq 10\)


解题思路

显然不能建\(n\times n\)个点跑费用流,考虑怎么优化。

我们可以缩去一些中间路程,对于每个人只留下第一次到达该点的这些点,但是我们需要适当改变边权。

用\(Floyd\)求出\(d_{i,j}\)表示从\(i\)走到\(j\)且只走编号不大于\(max\{i,j\}\)的点的最短距离,这样因为如果一个人要走到\(j\),那么它一定是第一个到的,所以不能走过大于\(j\)的点,而前面的我们可以调整每个人的行走顺序来让前面的点都解锁后这个人再出发。

现在问题就变为了求\(k\)条权值和最小的路径覆盖所有点。其实不用上下界,因为是费用流,所以我们每个点拆成出/入点,然后入点向出点连一条\((1,-inf)\)和\((inf,0)\)的边(前面是流量,后面是费用)

这样如果一个点不走会多一堆费用,所以肯定会经过所有点。

这样点数就是\(O(n)\)级别了


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=310,inf=1e9;
struct node{
ll to,next,w,c;
}a[N*N*10];
ll n,m,k,s,t,ans,tot=1;
ll ls[N],f[N],mf[N],d[N][N],pre[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool spfa(){
memset(f,0x3f,sizeof(f));
f[s]=0;q.push(s);v[s]=1;mf[s]=inf;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])q.push(y),v[y]=1;
}
}
}
return f[t]<1e18;
}
void updata(){
ll x=t;ans+=mf[x]*f[x];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
memset(d,0x3f,sizeof(d));n++;
for(ll i=1;i<=m;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);x++;y++;
d[x][y]=min(d[x][y],w);
d[y][x]=min(d[y][x],w);
}
for(ll i=1;i<=n;i++)d[i][i]=0;
for(ll k=1;k<=n;k++)
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
if(k<i||k<j)d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
s=2*n+1;t=s+1;
addl(s,1,k,0);
for(ll i=1;i<=n;i++){
addl(i,i+n,1,-inf);
addl(i,i+n,inf,0);
addl(i+n,t,inf,0);
for(ll j=i+1;j<=n;j++)
if(d[i][j]<1e18)addl(i+n,j,inf,d[i][j]);
}
while(spfa())
updata();
printf("%lld\n",ans+n*inf);
return 0;
}

P4542-[ZJOI2011]营救皮卡丘【费用流,Floyd】的更多相关文章

  1. BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)

    BZOJ 洛谷 首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路.可以用\(Floyd\)处理. 注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[ ...

  2. bzoj2324 [ZJOI2011]营救皮卡丘 费用流

    [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2653  Solved: 1101[Submit][Status][D ...

  3. 【BZOJ 2324】[ZJOI2011]营救皮卡丘 费用流

    本人实行诱骗拐卖(利用自然分层与实际意义),正解拼接补充(充分利用最大流限制(不浪费任何一个走出去的机会而不是不浪费任何一个已有的流)与问题转换) #include <cstdio> #i ...

  4. P4542 [ZJOI2011]营救皮卡丘(Floyd+网络流)

    P4542 [ZJOI2011]营救皮卡丘 乍一看似乎没啥题相似的 仔细一看,$N<=150$ 边又是双向边,似乎可以用Floyd搞   先跑一遍Floyd处理出$dis[i][j]$ 注意到走 ...

  5. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  6. bzoj 2324 ZJOI 营救皮卡丘 费用流

    题的大概意思就是给定一个无向图,边有权值,现在你有k个人在0点,要求走到n点,且满足 1:人们可以分头行动,可以停在某一点不走了 2:当你走到x时,前x-1个点必须全部走过(不同的人走过也行,即分两路 ...

  7. 洛咕P4542 [ZJOI2011]营救皮卡丘

    套路题? 感觉讲不清,先写建图 把每个点拆成两个,A和B, S->Ai流量=1费用=0,Bi->T流量=1费用=0, Ai->Bj流量=1费用=ij最短路 还有一个特殊的s点,S-& ...

  8. P4542 [ZJOI2011]营救皮卡丘

    题目链接 题意分析 我们仔细分析一下 发现题目要求用最多\(k\)条路径实现最小权覆盖 首先由于最小路径覆盖针对的是有向图 但是这是一个无向图 所以我们面向对象编程 我们维护一个数组\(d[i][j] ...

  9. bzoj 2324 [ZJOI2011]营救皮卡丘(floyd,费用流)

    2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1777  Solved: 712[Submit][Stat ...

  10. BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )

    昨晚写的题...补发一下题解... 把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd) S->0(K, 0), S->xi(1 ...

随机推荐

  1. ASP.NET Core教程:ASP.NET Core中使用Redis缓存

    参考网址:https://www.cnblogs.com/dotnet261010/p/12033624.html 一.前言 我们这里以StackExchange.Redis为例,讲解如何在ASP.N ...

  2. COM组件的使用方法

    https://prismlibrary.com/docs/wpf/converting-from-7.html Requirement: 1.创建myCom.dll,该COM只有一个组件,两个接口I ...

  3. sql查询第10条到第20条数据

    select top(10) * from T1 where Id >= (select MAX(Id) from (select top(20) * from T1 order by Id) ...

  4. 【转】ps命令详解与使用

    ps 概述 Linux中的ps命令是Process Status的缩写.ps命令用来列出系统中当前运行的那些进程.ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态 ...

  5. hystrix熔断机制修改配置

    0.注意 0.1.如果使用command 的 execute( )方法的话,其实在一个for循环,执行多次,其实每个的执行顺序并不是固定的,如果你想固定,需要使用queue circuit break ...

  6. 关于windows下 python3安装 cython的说明

    针对python3.6希望在windows环境下安装cython,但是网上任何关于mingw的尝试都没有生效.所以只能下载 vs, 1.去官网https://visualstudio.microsof ...

  7. mysql索引基本介绍

    转载:https://blog.csdn.net/weixin_34392906/article/details/93707682 转载于:https://www.cnblogs.com/maohui ...

  8. swiper tabs综合示例

    html部分: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <m ...

  9. Mybatis源码解析4——SqlSession

    上一篇文章中,我们介绍了 SqlSessionFactory 的创建过程,忘记了的,可以回顾一下,或者看下下面这张图也行. 接下来,可乐讲给大家介绍 Mybatis 中另一个重量级嘉宾--SqlSes ...

  10. Nginx版本平滑升级方案

    背景:由于负载均衡测试服务器中nginx版本过低,存在安全漏洞,查询相关修复漏洞资料,需要采取nginx版本升级形式对漏洞进行修复. Nginx平滑升级方案 1.案例采用版本介绍 旧版本 nginx- ...