P3980-[NOI2008]志愿者招募【费用流】
正题
题目链接:https://www.luogu.com.cn/problem/P3980
题目大意
\(n\)天,第\(i\)天需要\(A_i\)个志愿者。有\(m\)种志愿者,第\(i\)种从\(s_i\)天服务到\(t_i\)天,需要\(c_i\)元的费用。
求满足条件的最小费用
\(1\leq n\leq 1000,1\leq m\leq 10000\)
解题思路
考虑费用流
如果雇佣了\(s_i\)天到\(t_i\)天的话那么就相当于将这段范围\(A_i\)的值减一,注意到是区间的\(1\)需要\(c_i\)的费用,那么肯定这个条件是压缩成一条边的,也就是\(s_i\)向\(t_i+1\)连接费用为\(1\)的边。
这样的话考虑如何满足条件,注意到是减一也就是抽走一条经过\(s_i\)到\(t_i\)的流量,也就是对于这些流量的限制。
建立\(n\)个点,\(i\)向\(i+1\)连接流量为\(T-A_i\)(\(T\)是一个很大的数就可以了)表示至少需要抽走\(A_i\)的流量就好了。
然后跑费用流
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=1100,T=(1ll<<31),inf=1e18;
struct node{
ll to,next,w,c;
}a[N*22];
ll n,m,s,t,tot=1,ans,ls[N],f[N],mf[N],pre[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
q.push(s);f[s]=0;v[s]=1;mf[s]=T;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return (f[t]<inf);
}
void Updata(){
ll x=t;ans+=mf[t]*f[t];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&m);
s=n+2;t=s+1;
addl(s,1,T,0);
for(ll i=1;i<=n;i++){
ll x;
scanf("%lld",&x);
addl(i,i+1,T-x,0);
}
for(ll i=1;i<=m;i++){
ll s,t,c;
scanf("%lld%lld%lld",&s,&t,&c);
addl(s,t+1,T,c);
}
addl(n+1,t,T,0);
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}
P3980-[NOI2008]志愿者招募【费用流】的更多相关文章
- P3980 [NOI2008]志愿者招募 费用流 (人有多大胆地有多大产
https://www.luogu.org/problemnew/show/P3980 感觉费用流比网络流的图更难想到,要更大胆.首先由于日期是连续的,所以图中的点是横向排列的. 这道题有点绕道走的意 ...
- P3980 [NOI2008]志愿者招募 (费用流)
题意:最多1000天 每天需要至少ai个工人施工 有10000种工人可以雇佣 每种工人可以工作si到ti天 雇佣一个的花费是ci 问怎样安排使得施工花费最少 思考:最直白的建模方式 就是每种工人可以和 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- [NOI2008]志愿者招募 (费用流)
大意: $n$天, 第$i$天要$a_i$个志愿者. $m$种志愿者, 每种无限多, 第$i$种工作时间$[s_i,t_i]$花费$c_i$, 求最少花费. 源点$S$连第一天, 容量$INF$ 第$ ...
- Vijos1825 NOI2008 志愿者招募 费用流
Orz ByVoid大神的题解:https://www.byvoid.com/blog/noi-2008-employee/ 学习网络流建图的好题,不难想到线性规划的模型,不过利用模型的特殊性,结合网 ...
- 【洛谷】P3980 [NOI2008]志愿者招募
[洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...
- 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)
从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...
- [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]
题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...
- luogu P3980 [NOI2008]志愿者招募
传送门 网络流又一神仙套路应用 首先考虑列不等式,设\(x_i\)为第i种人的个数,记\(b_{i,j}\)为第i种人第j天是否能工作,那么可以列出n个不等式,第j个为\(\sum_{i=1}^{m} ...
随机推荐
- servlet防止表单重复提交
日常开发中,防表单重复提交是一项必须的工作 我们可以利用javascript防止表单重复提交,但是利用javascript防止表单重复提交会出现一个新的问题 因为某些用户可能会绕过script代码直接 ...
- Qt中子窗口关闭之后,立即释放资源的方法
用Qt做界面的时候,很多时候都会遇见点击一个按钮弹出一个新的窗口的功能.我在刚开始做这个功能的时候,直接是点击一次按钮就new一个新的窗口,每次都只是将子窗口关闭而已,并没有去释放子窗口的资源,这样就 ...
- 十一:JavaWeb中的监听器(二)
一.监听域对象中属性的变更的监听器 域对象中属性的变更的事件监听器就是用来监听 ServletContext, HttpSession, HttpServletRequest 这三个对象中的属性变更信 ...
- Linux 安装配置 NET模式网络环境配置
1.下载linux:发行版 Ubuntu REdHat centos Debain Fedora,SUSE,OpenSUSEcentos 6.xcentos 7.x在虚拟机(VmWare)上 安装l ...
- LeetCode42. 接雨水(java)
42.接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水. 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种 ...
- SpringCloud 商品架构例子(一)
架构演进和分布式系统基础知识 1.传统架构演进到分布式架构 简介:讲解单机应用和分布式应用架构演进基础知识 高可用 LVS+keepalive 单体应用: 集群: 微服务架构: 1.单体应用: 开发速 ...
- 跟着华为,学数字化转型(8):组织转型之业务IT一体化
数字化时代,技术已经成了企业发展的重要驱动力,是转型中的企业不可或缺的力量.那采用什么样的组织结构,才能发挥出技术能力的最大价值呢?华为经历了多种组织形式,最终得出的结论是业务IT一体化组织是最合适的 ...
- vivo全球商城时光机 - 大型促销活动保障利器
一.背景 官网商城在双11.双12等大促期间运营同学会精心设计许多给到用户福利的促销活动,当促销活动花样越来越多后就会涉及到很多的运营配置工作(如指定活动有效期,指定活动启停状态,指定活动参与商品等等 ...
- FFmpeg 播放 RTSP/Webcam 流
本文将介绍 FFmpeg 如何播放 RTSP/Webcam/File 流.流程如下: RTSP/Webcam/File > FFmpeg open and decode to BGR/YUV & ...
- Java如何调用C语言程序,JNI技术
Java为什么要调用C语言编写的程序因为涉及操作系统底层的事件,Java是处理不了的,例如用户上传一个视频文件,需要后台给视频加上水印,或者后台分离视频流和音频流,这个事Java就做不了,只能交给C语 ...