[转载]Pytorch中nn.Linear module的理解

本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思。

这个模块要实现的公式是:y=xAT+*b

来源:https://blog.csdn.net/u012936765/article/details/52671156

Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换。

创建

parent 的init函数

Linear的创建需要两个参数,inputSize 和 outputSize

inputSize:输入节点数

outputSize:输出节点数

所以Linear 有7个字段:

weight : Tensor , outputSize ×× inputSize

bias: Tensor ,outputSize

gradWeight: Tensor , outputSize ×× inputSize

gradBias: Tensor ,outputSize

gradInput: Tensor

output: Tensor

_type: output:type()

例子

module = nn.Linear(10, 5)

1

Forward Pass

————————————————

版权声明:本文为CSDN博主「bubbleoooooo」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/u012936765/article/details/52671156

这篇文章有一个很好的例子:

import torch

x = torch.randn(128, 20)  # 输入的维度是(128,20)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)
print('m.weight.shape:\n ', m.weight.shape)
print('m.bias.shape:\n', m.bias.shape)
print('output.shape:\n', output.shape) # ans = torch.mm(input,torch.t(m.weight))+m.bias 等价于下面的
ans = torch.mm(x, m.weight.t()) + m.bias
print('ans.shape:\n', ans.shape) print(torch.equal(ans, output))

输出是:

m.weight.shape:
torch.Size([30, 20])
m.bias.shape:
torch.Size([30])
output.shape:
torch.Size([128, 30])
ans.shape:
torch.Size([128, 30])
True

注意它输入的是一个128*20的二维tensor,经过一个线性变换后变成了128*30的.如果输入换成了:

x = torch.randn(20, 128)  # 输入的维度是(20,128)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)

就会报错了。因为公式是y=xAT+b。由上面的输出我们可以看到,A的维度是3020,转置之后是20*30,所以应该和X的列数对应。一般的:linear的输入和输出值的都是列数,把输入换成:

x = torch.randn(20, 20)  # 输入的维度是(20,20)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)

输出之后就会发现,改变的依然是列数。

[转载]Pytorch中nn.Linear module的理解的更多相关文章

  1. Pytorch中nn.Conv2d的用法

    Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...

  2. [转载]PyTorch中permute的用法

    [转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将ten ...

  3. Pytorch中nn.Dropout2d的作用

    Pytorch中nn.Dropout2d的作用 首先,关于Dropout方法,这篇博文有详细的介绍.简单来说, 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更 ...

  4. torch.nn.Linear()函数的理解

    import torch x = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output ...

  5. pytorch中的Linear Layer(线性层)

    LINEAR LAYERS Linear Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(1 ...

  6. pytorch 中的重要模块化接口nn.Module

    torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...

  7. PyTorch 中,nn 与 nn.functional 有什么区别?

    作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...

  8. Pytorch中Module,Parameter和Buffer的区别

    下文都将torch.nn简写成nn Module: 就是我们常用的torch.nn.Module类,你定义的所有网络结构都必须继承这个类. Buffer: buffer和parameter相对,就是指 ...

  9. 小白学习之pytorch框架(3)-模型训练三要素+torch.nn.Linear()

    模型训练的三要素:数据处理.损失函数.优化算法    数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torc ...

随机推荐

  1. Java 比较两个字符串的相似度算法(Levenshtein Distance)

    转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...

  2. mac中的word内容丢失

    改了一晚上好不容易快搞完了,结果1万字的内容丢了,并且不知道自己当时怎么想的还清理了回收站 还是用mac自带的工具吧,同时代码也要及时上传github

  3. AVQueuePlayer

    想要视频一个接一个的无缝连续播放么? 还在用mpmovieplayercontroller么?out了! 介绍一个可以实现无缝连续播放视频的东西-------AVQueuePlayer ! AVQue ...

  4. 定位上下文(补充css的position属性)

    ]把元素的position属性设定为relative.absolute或fixed后,继而可以使用TRBL属性,相对于另一个元素移动该元素的位置.这里的“另一个元素”,就是该元素的定位上下文. 绝对定 ...

  5. kafka入门学习---1 启动kakfa

    1.查看kafka生产者产生的数据 kafka-console-consumer.sh --zookeeper hadoop-:,hadoop-:,hadoop-: -topic kafkademo ...

  6. Spark算子与RDD基本转换

    map 将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素. 输入分区与输出分区一对一,即:有多少个输入分区,就有多少个输出分区. flatMap 属于Transformation算子 ...

  7. uni-app 手指左右滑动实现翻页效果

    首先给页面添加 touch 事件 <view class="text-area" @touchstart="start" @touchend=" ...

  8. Windows 桌面利用 Navicat等工具连接 虚拟机Mysql

    1.mysql>use mysql;2.mysql>update user set host = '%' where user ='root';3.mysql>select host ...

  9. Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)

    Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互 ...

  10. ZOJ Problem Set - 1004

    1.翻译参考 http://liucw.blog.51cto.com/6751239/1198026 2.代码参考 http://www.cnblogs.com/devymex/archive/201 ...