题目链接

题意 : 给定方格中第一行的各个起点、再给定最后一行与起点相对应的终点、问你从这些起点出发到各自的终点、不相交的路径有多少条、移动方向只能向下或向右

分析 :

首先对于多起点和多终点的不相交路径、有一个LGV定理

实际上就是 n^2 构造矩阵、再计算其行列式

矩阵的构造方法可以看看这个 ==> Click here

那么接下来就是确定各自路径的方案数了

这是一个经典问题

这里需要求解组合数、用预处理阶乘逆元的方法即可求出

#include<bits/stdc++.h>
#define LL long long
using namespace std;

;
;

LL Fac_inv[Comb_Maxn];
LL Fac[Comb_Maxn];

inline void Comb_init()
{
    Fac_inv[] = Fac[] = ;
    Fac_inv[] = ;

    ; i<Comb_Maxn; i++)
        Fac[i] = Fac[i-] * (LL)i % mod;

    ; i<Comb_Maxn; i++)
        Fac_inv[i] = (LL)(mod - mod / i) * Fac_inv[mod % i] % mod;

    ; i<Comb_Maxn; i++)
        Fac_inv[i] = Fac_inv[i-] * Fac_inv[i] % mod;
}

LL Comb(int n, int m)
{ return Fac[n] * Fac_inv[m] % mod * Fac_inv[n-m] % mod; }

const int maxm = 1e2;
LL Mat[maxm+][maxm+];
int turn,n;
void gcd(LL a,LL b,LL &d,LL &x,LL &y)
{
    ,y=;
    else{
        ++turn;
        gcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}
LL det(LL n)
{
    LL tmp1[maxm+],tmp2[maxm+];
    LL ans=;
    ;i<=n;++i){
        ;j<=n;++j){
            ){
                LL A=Mat[i][i],B=Mat[j][i],d,x,y;
                turn=;
                gcd(A,B,d,x,y);
                ;k<=n;++k) tmp1[k]=Mat[i][k],tmp2[k]=Mat[j][k];
                ;k<=n;++k) Mat[i][k]=(x*tmp1[k]+y*tmp2[k])%mod;
                A/=d,B/=d;
                ) x=B,y=-A,ans=-ans%mod;else x=-B,y=A;
                ;k<=n;++k) Mat[j][k]=(x*tmp1[k]+y*tmp2[k])%mod;
            }
        }
        ans=ans*Mat[i][i]%mod;
    }
    ) ans+=mod;
    return ans;
}

int A[maxm], B[maxm];
int main(void)
{
    Comb_init();
    int nCase;
    scanf("%d", &nCase);
    while(nCase--){
        int n, k;
        scanf("%d %d", &n, &k);
        ; i<=k; i++) scanf("%d", &A[i]);
        ; i<=k; i++) scanf("%d", &B[i]);
        ; i<=k; i++){
            ; j<=k; j++){
                int a, b;
                a = n-+B[j]-A[i];
                b = n-;
                ;
                 || b < ) Mat[i][j] = ;
                else Mat[i][j] = Comb(a, b);
            }
        }

        printf("%lld\n", det(k) % mod);
    }
    ;
}

HDU 5852 Intersection is not allowed! ( 2016多校9、不相交路径的方案、LGV定理、行列式计算 )的更多相关文章

  1. HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解

    题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,b ...

  2. hdu 5744 Keep On Movin (2016多校第二场)

    Keep On Movin Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  3. HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  4. HDU 5732 Subway(2016多校1J,树的重心 + 哈希)

    题目链接  2016多校1 Problem J 题意  给定两棵相同的树,但是编号方案不同.求第一棵树上的每个点对应的第二棵树上的点.输出一种方案即可. 首先确定树的直径的中点.两棵树相等意味着两棵树 ...

  5. hdu 5852 :Intersection is not allowed! 行列式

    有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,bk). ...

  6. HDU 5795 A Simple Nim (博弈) ---2016杭电多校联合第六场

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  7. hdu 5120 Intersection

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 A ring is a 2-D figure bounded by two circles sh ...

  8. hdu 5120 Intersection 圆环面积交

    Intersection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5 ...

  9. HDU 5963 朋友 【博弈论】 (2016年中国大学生程序设计竞赛(合肥))

    朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Descr ...

随机推荐

  1. P1040 加分二叉树(区间DP)

    (点击此处查看原题) 解题思路 题目已经给出了树的中序遍历,因此我的想法是利用中序遍历的特点:若某子树的根结点为k,那么k之前的结点组成这一子树的左子树,k之后的结点组成这一子树的右子树,可以通过不断 ...

  2. nasm 使用总结

    1,编译 nasm -f bin myfile.asm -o myfile  生成目标文件 nasm -f bin myfile.asm -l myfile   生成清单文件 2,快速开始 nasm是 ...

  3. 第四章 MIZ701 ZYNQ制作UBOOT固化程序

      4.0难度系数★☆☆☆☆☆☆ 4.1是什么是固化 我们前几章将的程序都是通过JTAG先下载bit流文件,再下载elf文件,之后点击Run As来运行的程序.JTAG的方法是通过TCL脚本来初始化P ...

  4. 怎样获取不同环境下的document对象

    1. 在一般的网页文档中, 可通过: document 或 window.document 获取; 2. 在iframe框架中, 可通过iframe节点的属性: contentDocument 获取; ...

  5. spring-boot-plus集成Shiro+JWT权限管理

    SpringBoot+Shiro+JWT权限管理 Shiro Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码和会话管理. 使用Shiro的易于理解的API,您可以 ...

  6. C# 使用Emit实现动态AOP框架 (一)

    目  录 C# 使用Emit实现动态AOP框架 (一) C# 使用Emit实现动态AOP框架 (二) C# 使用Emit实现动态AOP框架 (三) C# 使用Emit实现动态AOP框架 进阶篇之异常处 ...

  7. 【CNN】 吴恩达课程中几种网络的比较

    LeNet5 AlexNet VGG16 ResNet  : 残差网络 Inception Net :  特点,可以通过1*1*192 的卷积核来缩减参数个数,压缩维度,约缩减10倍, 例如  :用1 ...

  8. linux文件目录详细介绍

    linux文件目录 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里 /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录,是用户主目录的基点 ...

  9. vue学习(7)-路由抽离

    cnpm i vue-router -S

  10. docker第一篇 容器技术入门

    Container 容器是一种基础工具,泛指任何可以容纳其它物品的工具. Linux Namespaces (docker容器技术主要是通过6个隔离技术来实现) namespace    系统调用参数 ...