functools.lru_cache装饰器

functools.lru_cache是非常实用的装饰器,他实现了备忘功能它把耗时的函数的结果保存起来,避免传入相同的参数时重复计算。LRU是Least Recently Used的缩写,表明缓存不会无限制增长,一段时间不用的缓存条目会被扔掉。

使用递归来生成斐波那契的第n个数

# clock 装饰器
import time
import functools def clock(func):
@functools.wraps(func)
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result))
return result
return clocked # 利用递归方式生成斐波那契
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1) if __name__ == '__main__':
print(fibonacci(6)) '''
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00081015s] fibonacci(2) -> 1
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00081015s] fibonacci(4) -> 3
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00081134s] fibonacci(3) -> 2
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00000000s] fibonacci(4) -> 3
[0.00081134s] fibonacci(5) -> 5
[0.00162148s] fibonacci(6) -> 8
8
'''

可以看出使用递归会进行很多重复的计算,数据量增多时调用和计算更多。

使用functools.lru_cache优化

# clock 装饰器
import time
import functools def clock(func):
@functools.wraps(func)
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result))
return result
return clocked # 利用递归方式生成斐波那契
@functools.lru_cache()
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1) if __name__ == '__main__':
print(fibonacci(6)) '''
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00000000s] fibonacci(4) -> 3
[0.00000000s] fibonacci(5) -> 5
[0.00000000s] fibonacci(6) -> 8
8
'''

可以看到使用lru_cache性能会显著改善。需要注意的是被lru_cache装饰的函数接受的参数必须是不可变类型。

functools.lru_cache装饰器的更多相关文章

  1. python中functools.wraps装饰器的作用

    functools.wraps装饰器用于显示被包裹的函数的名称 import functools def node(func): #@functools.wraps(func) def wrapped ...

  2. python functools.wraps装饰器模块

    # -*-coding=utf-8 -*-#实现一个函数执行后计算执行时间的功能 __author__ = 'piay' import time, functools def foo(): ''' 定 ...

  3. Python 标准库中的装饰器

    题目描述 1.简单举例 Python 标准库中的装饰器 2.说说你用过的 Python 标准库中的装饰器 1. 首先,我们比较熟悉,也是比较常用的 Python 标准库提供的装饰器有:property ...

  4. 用functools.lru_cache实现Python的Memoization

    现在你已经看到了如何自己实现一个memoization函数,我会告诉你,你可以使用Python的functools.lru_cache装饰器来获得相同的结果,以增加方便性. 我最喜欢Python的原因 ...

  5. python 函数结果缓存一段时间的装饰器

    把函数结果缓存一段时间,比如读取一个mongodb,mongodb中的内容又在发生变化,如果从部署后,自始至终只去读一次那就感触不到变化了,如果每次调用一个函数就去读取那太频繁了耽误响应时间也加大了c ...

  6. Python基础:13装饰器

    装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的应用有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同 ...

  7. Fluent_Python_Part3函数即对象,07-closure-decoration,闭包与装饰器

    第7章 函数装饰器和闭包 装饰器用于在源码中"标记"函数,动态地增强函数的行为. 了解装饰器前提是理解闭包. 闭包除了在装饰器中有用以外,还是回调式编程和函数式编程风格的基础. 1 ...

  8. python 装饰器(三):装饰器实例(一)

    示例 7-15 定义了一个装饰器,它会在每次调用被装饰的函数时计时,然后把经过的时间.传入的参数和调用的结果打印出来.示例 7-15 一个简单的装饰器,输出函数的运行时间 import time de ...

  9. python函数与方法装饰器

    之前用python简单写了一下斐波那契数列的递归实现(如下),发现运行速度很慢. def fib_direct(n): assert n > 0, 'invalid n' if n < 3 ...

随机推荐

  1. 【S/4系列专栏】关于S/4你想知道的问题与答案

    转自:http://www.sohu.com/a/152235225_652820 S/4系列专栏将收集国内的实施案例,从各个角度进行分析,包括S/4的由来,S/4各个版本的变化,企业是否有必要选择S ...

  2. Spring Boot Actuator:介绍和使用

    Spring Boot Actuator提供一系列HTTP端点来暴露项目信息,用来监控和管理项目.在Maven中,可以添加以下依赖: <!-- Spring boot starter: actu ...

  3. Spark源码(1): SparkConf

    1. 简介 SparkConf类负责管理Spark的所有配置项.在我们使用Spark的过程中,经常需要灵活配置各种参数,来使程序更好.更快地运行,因此也必然要与SparkConf类频繁打交道.了解它的 ...

  4. 【Fiori系列】浅谈SAP Fiori的设计美感与发展历程

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[Fiori系列]浅谈SAP Fiori的设计美 ...

  5. 《Java语言程序设计》

    课堂测试:用户需求:英语的26 个字母的频率在一本小说中是如何分布的?某类型文章中常出现的单词是什么?某作家最常用的词汇是什么?<Harry Potter> 中最常用的短语是什么,等等. ...

  6. 关于Angular+ngx-perfect-scrollbar自定义各大浏览器滚动条样式的解决方法

    资料: http://manos.malihu.gr/jquery-custom-content-scroller/  (此项是结合Jquery使用的,在此并未采用) https://www.npmj ...

  7. Python报错总结丶自定义报错

    Python报错总结: 常见异常 1,NameError: name 'a' is not defined:未定义函数名             2,IndentationError: uninden ...

  8. (模板)poj2947(高斯消元法解同余方程组)

    题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...

  9. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

  10. [转帖]phoronix-test-suite测试云服务器

    phoronix-test-suite测试云服务器 https://www.cnblogs.com/tanyongli/p/7767804.html centos系统 phoronix-test-su ...