十进制快速幂(牛客多校第五场)-- generator 1

思路:
十进制快速幂。
#include <stdio.h>//sprintf
#include <cstdlib>////malloc exit strcat itoa system("cls")
#include <iostream>//pair
#include <fstream>
#include <bitset>
//#include <map> https://ac.nowcoder.com/acm/contest/885/B
#include <vector>
#include <stack>
#include <set>
#include <string.h>//strstr
#include <string>
#include <time.h>//srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
#include <cmath>
#include <queue>//priority_queue<long long, vector<long long>, greater<long long> > q;
#include <vector>
//#include <math.h>
//#include <windows.h> https://www.nitacm.com/problem_show.php?pid=222
#include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
using namespace std;
#define pr printf
#define sc scanf
#define fo(a,b,c) for((a)=(b);(a)<=(c);(a)++)//register long long i
#define fr(a,b,c) for((a)=(b);(a)>=(c);(a)--)
#define mem(a,b) memset((a),(b),sizeof((a)))
const double e=2.718281828;
const double PI=acos(-1.0);
const double ESP=1e-;
const long long inf=;
const long long N=;
long long mod;
const long long MAXN=; long long x0,x1,a,b,MOD;
struct MAT
{
long long mat[MAXN][MAXN];
MAT()
{
mat[][]=mat[][]=;//对角矩阵 E;
mat[][]=mat[][]=;
}
MAT operator*(const MAT &a)const
{
MAT b;
long long i,j,k;
mem(b.mat,);
fo(i,,MAXN-)
{
fo(j,,MAXN-)
{
fo(k,,MAXN-)
{
b.mat[i][j]=(b.mat[i][j]+mat[i][k]*a.mat[k][j]);
b.mat[i][j]%=mod;
}
}
}
return b;
}
}transfer; MAT Mqpow(MAT x,long long n)
{
struct MAT temp;
while(n)
{
if(n&)
temp=temp*x;
x=x*x;
n>>=;
}
return temp;
} char n[N];
struct MAT mark[],start;
int main()
{
sc("%lld%lld%lld%lld%s%lld",&x0,&x1,&a,&b,n,&MOD);
// mem(transfer.mat,0);
mod=MOD;
transfer.mat[][]=a,transfer.mat[][]=b;
transfer.mat[][]=,transfer.mat[][]=;
start.mat[][]=x1,start.mat[][]=x0;
mark[]=transfer;
for(int i=;i<=;++i)
mark[i]=transfer*mark[i-];
int l=strlen(n);
struct MAT ans;
for(int i=;i<=l-;++i)
{
ans=Mqpow(ans,);
ans=ans*mark[n[i]-''];
}
start=ans*start;
pr("%lld\n",start.mat[][]%MOD);
return ;
}
十进制快速幂(牛客多校第五场)-- generator 1的更多相关文章
- 2019牛客多校第五场 generator 1——广义斐波那契循环节&&矩阵快速幂
理论部分 二次剩余 在数论中,整数 $X$ 对整数 $p$ 的二次剩余是指 $X^2$ 除以 $p$ 的余数. 当存在某个 $X$,使得式子 $X^2 \equiv d(mod \ p)$ 成立时,称 ...
- generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...
- 2019牛客多校第五场B generator 十进制快速幂
generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...
- 牛客多校第五场B generator1(十进制矩阵快速幂)题解
题意: 已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1 ...
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
- 2019牛客多校第五场B-generator 1(矩阵快速幂)
generator 1 题目传送门 解题思路 矩阵快速幂.只是平时的矩阵快速幂是二进制的,这题要用十进制的快速幂. 代码如下 #include <bits/stdc++.h> #defin ...
- 牛客多校第五场 B generator 1 矩阵快速幂
题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...
- 2019 牛客多校第五场 B generator 1
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题目大意 略. 分析 十进制矩阵快速幂. 代码如下 #include <bits/stdc++.h& ...
- 牛客多校第五场 F take
链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...
随机推荐
- thinkphp session 跨域问题解决方案
session 跨域,困扰我好几天,今天终于弄明白了! 不管是thinkphp ,还是本身的php 其实都要设置session.cookie_domain 设置好,就OK了 在thinkphp 里,在 ...
- mysql5.7以上基本配置
MySQL表名区分大小写设置 关闭MySQL服务 在服务运行目录找到my.ini或者my.cnf文件 find / -name my.cnf 打开文件,找到[mysqld]在下面增加一行 lower_ ...
- LeetCode 77. 组合(Combinations)
题目描述 给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合. 示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], ...
- import 和 require 的 区别
node编程中最重要的思想就是模块化,import和require都是被模块化所使用. 遵循规范 require 是 AMD规范引入方式 import是es6的一个语法标准,如果要兼容浏览器的话必须转 ...
- koa 基础(十七)原生 JS 中的类、静态方法、继承
1.app.js /** * 原生 JS 中的类.静态方法.继承 * es5中的类和静态方法 */ function Person(name, age) { // 构造函数里面的方法和属性 this. ...
- 最少步数&P1443 马的遍历
1330:[例8.3]最少步数 s数组:记录(1,1)到达每一点需要的最少步数 s[1][1]自然为 0,其余初始化为 -1 que数组:que[#][1] 表示(1,1)可到达点的 x 坐标 q ...
- [SQL Server 视图的创建- (create view必须是批处理中仅有的语句问题)]
当我们SQL Server在创建视图时 ,会出现"create view 必须是批处理中仅有的语句"这个语法错误提示 ,实际上这本身没什么错! 因为create view 必须是批 ...
- 01 numpy库(一)
01-numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. NumPy 是一个运行 ...
- Oracle COALESCE函数
Oracle COALESCE函数 Oracle COALESCE函数语法为COALESCE(表达式1,表达式2,...,表达式n),n>=2,此表达式的功能为返回第一个不为空的表达式,如果都为 ...
- Ceph 故障修复记录(持续更新)
目录 文章目录 目录 问题:故障域与副本数导致的 PG 不正常 问题:故障域与副本数导致的 PG 不正常 缘起:执行 rbd snap unprotect 执行卡死. 调查:Ceph 集群 PG 不正 ...