Flink中API使用详细范例--window
正文前先来一波福利推荐:
福利一:
百万年薪架构师视频,该视频可以学到很多东西,是本人花钱买的VIP课程,学习消化了一年,为了支持一下女朋友公众号也方便大家学习,共享给大家。
福利二:
毕业答辩以及工作上各种答辩,平时积累了不少精品PPT,现在共享给大家,大大小小加起来有几千套,总有适合你的一款,很多是网上是下载不到。
获取方式:
微信关注 精品3分钟 ,id为 jingpin3mins,关注后回复 百万年薪架构师 ,精品收藏PPT 获取云盘链接,谢谢大家支持!

------------------------正文开始---------------------------
Flink Window机制范例实录:
什么是Window?有哪些用途?
1、window又可以分为基于时间(Time-based)的window
2、基于数量(Count-based)的window。
Flink DataStream API提供了Time和Count的window,同时增加了基于Session的window。
同时,由于某些特殊的需要,DataStream API也提供了定制化的window操作,供用户自定义window。
下面,主要介绍Time-Based window以及Count-Based window,以及自定义的window操作,Session-Based Window操作将会在后续的文章中讲到。
1、Time-Based Window
细分:基于时间的window又分为:
增量聚合;全量聚合。
--------------------------------增量聚合-------------------------------:

类似于 Flink Sql中的 group window,计算结果不断的更新;
------------------------------------------------------------------------------
代码示例:
1.1、Tumbling window(翻滚)
此处的window要在keyed Stream上应用window操作,当输入1个参数时,代表Tumbling window操作,每分钟统计一次,此处用scala语言实现:
增量聚合代码---- 求和操作:
//todo 获得数据源后进行算子操作
DataStream<StartAppCount> windowedData = startupInfoData.keyBy("appId") //以设备id进行分组
.timeWindow(Time.minutes(60)) //指定时间窗口大小为5分钟,指定时间间隔为5分钟
.aggregate(new CountAgg(), new WindowResultFunction()); windowedData.print();
CountAgg自定义的函数,需要实现 AggregateFunction函数
public class CountAgg implements AggregateFunction<StartupInfoData, Long, Long> {
@Override
public Long createAccumulator() { //初始化算子
return 0L;
}
@Override
public Long add(StartupInfoData startupInfoData, Long acc) { //传入一个入参后,做累加操作,将算子加1
return acc + ;
}
@Override
public Long getResult(Long acc) { //最输出merge产生的结果
return acc;
}
@Override
public Long merge(Long acc1, Long acc2) { //对算子进行每一个的累和
return acc1 + acc2;
}
}
输出函数格式:
public class WindowResultFunction implements WindowFunction<Long, StartAppCount, Tuple, TimeWindow>
{
@Override
public void apply(
Tuple key, // 窗口的主键,即 appId
TimeWindow window, // 窗口
Iterable<Long> aggregateResult, // 聚合函数的结果,即 count 值
Collector<StartAppCount> collector // 输出类型为 StartAppCount
) throws Exception
{
String appId = ((Tuple1<String>) key).f0;
Long count = aggregateResult.iterator().next();
collector.collect(StartAppCount.of(appId, window.getEnd(), count));
}
自定义输出类的类格式:
public class StartAppCount {
public String appId; // 商品ID
public long windowEnd; // 窗口结束时间戳
public long count; // 商品的点击量
public static StartAppCount of (String appId, long windowEnd, long count) {
StartAppCount result = new StartAppCount();
result.appId = appId;
result.windowEnd = windowEnd;
result.count = count;
return result;
}
@Override
public String toString() {
return "WordWithCount{" +
"appId='" + appId + '\'' +
", count=" + count +
'}';
}
}
增量聚合代码---- 求平均值操作:
public class AverageAggregate implements AggregateFunction<Tuple2<String,Long>, Tuple2<Long, Long>, Double> {
@Override
public Tuple2<Long, Long> createAccumulator() {
return new Tuple2<>(0L, 0L);
}
@Override
public Tuple2<Long, Long> add(Tuple2<String, Long> value, Tuple2<Long, Long> acc) { //可以理解为缓存的中间值
return new Tuple2<>(acc.f0 + value.f1, acc.f1 + 1L); //传入的值加到acc的第一个值得到传入值, 第二个值为个数
}
@Override
public Double getResult(Tuple2<Long, Long> acc) {
return (double)acc.f0 / acc.f1;
}
@Override
public Tuple2<Long, Long> merge(Tuple2<Long, Long> acc1, Tuple2<Long, Long> acc2) { //进行累和合并
return new Tuple2<>(acc1.f0+acc2.f0, acc1.f1+acc2.f1);
}
}
使用sum进行求和的代码:
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
}
}
}).keyBy("word")
.timeWindow(Time.seconds(), Time.seconds())//指定时间窗口大小为2秒,指定时间间隔为1秒
.sum("count");//在这里使用sum或者reduce都可以
/*.reduce(new ReduceFunction<WordWithCount>() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {
return new WordWithCount(a.word,a.count+b.count);
}
})*/
//把数据打印到控制台并且设置并行度
windowCounts.print().setParallelism();
使用reduce进行求和的方法:
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
}
}
}).keyBy("word")
.timeWindow(Time.seconds(), Time.seconds())//指定时间窗口大小为2秒,指定时间间隔为1秒
//.sum("count");//在这里使用sum或者reduce都可以
.reduce(new ReduceFunction<WordWithCount>() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {
return new WordWithCount(a.word,a.count+b.count);
}
});
--------------------------------全量的时间窗口操作-------------------------------:

代码示例:
public class MyprocessWindowFunction extends ProcessWindowFunction<Tuple2<String, Long>, String, String, TimeWindow> {
@Override
public void process(String s, Context context, Iterable<Tuple2<String, Long>> iterable, Collector<String> out) throws Exception {
long count = ;
for(Tuple2<String,Long> in : iterable)
{
count++;
}
out.collect("Window: " + context.window() + "count: " + count);
}
}
1.2、Sliding window(滑动)
//todo 获得数据源后进行算子操作
DataStream<StartAppCount> windowedData = startupInfoData.keyBy("appId") //以设备id进行分组
.timeWindow(Time.minutes(60), Time.seconds(5)) //指定时间窗口大小为5分钟,指定时间间隔为5分钟
.aggregate(new CountAgg(), new WindowResultFunction()); windowedData.print();
2、Count-Based Window
2.1、Tumbling Window (滚动计数窗口)
和Time-Based一样,Count-based window同样支持翻滚与滑动窗口,即在Keyed Stream上,统计每100个元素的数量之和
public class FlinkCountWindowDemo {
public static void main(String[] args) throws Exception
{
final ParameterTool params = ParameterTool.fromArgs(args);
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
env.setParallelism();
final int windowSize = params.getInt("window", 100);
// read source data
DataStreamSource<Tuple2<String, String>> inStream = env.addSource(new StreamDataSource());
// calculate
DataStream<Tuple2<String, String>> outStream = inStream
.keyBy()
.countWindow(windowSize)
.reduce(
new ReduceFunction<Tuple2<String, String>>() {
@Override
public Tuple2<String, String> reduce(Tuple2<String, String> value1, Tuple2<String, String> value2) throws Exception {
return Tuple2.of(value1.f0, value1.f1 + "" + value2.f1);
}
}
);
outStream.print();
env.execute("WindowWordCount");
}
}
2.2、Sliding Window
盗用 Flink 原理与实现:Window 机制 中的一张图,假设有一个滑动计数窗口,每2个元素计算一次最近4个元素的总和,那么窗口工作示意图如下所示:

代码示例:
public class FlinkCountWindowDemo {
public static void main(String[] args) throws Exception {
final ParameterTool params = ParameterTool.fromArgs(args);
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
env.setParallelism();
final int windowSize = params.getInt("window", );
final int slideSize = params.getInt("slide", );
// read source data
DataStreamSource<Tuple2<String, String>> inStream = env.addSource(new StreamDataSource());
// calculate
DataStream<Tuple2<String, String>> outStream = inStream
.keyBy()
.countWindow(windowSize, slideSize)
.reduce(
new ReduceFunction<Tuple2<String, String>>() {
@Override
public Tuple2<String, String> reduce(Tuple2<String, String> value1, Tuple2<String, String> value2) throws Exception {
return Tuple2.of(value1.f0, value1.f1 + "" + value2.f1);
}
}
);
outStream.print();
env.execute("WindowWordCount");
}
}
3、Advanced Window(自定义window)
自定义的Window需要指定3个function。
3.1、Window Assigner:负责将元素分配到不同的window。
WindowAPI提供了自定义的WindowAssigner接口,我们可以实现WindowAssigner的public abstract Collection<W> assignWindows(T element, long timestamp)方法。同时,对于基于Count的window而言,默认采用了GlobalWindow的window assigner,例如:keyValue.window(GlobalWindows.create())
Flink中API使用详细范例--window的更多相关文章
- Flink 中极其重要的 Time 与 Window 详细解析(深度好文,建议收藏)
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以 ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 —— 表中的模式匹配 Beta版
本文翻译自官网:Detecting Patterns in Tables Beta https://ci.apache.org/projects/flink/flink-docs-release-1 ...
- 如何在 Apache Flink 中使用 Python API?
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划, ...
- 彻底搞清Flink中的Window
窗口 在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理.当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的 ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 ——在持续查询中 Join
本文翻译自官网 : Joins in Continuous Queries https://ci.apache.org/projects/flink/flink-docs-release-1.9 ...
- flink中对于window和watermark的一些理解
package com.chenxiang.flink.demo; import java.io.IOException; import java.net.ServerSocket; import j ...
- Flink中的window、watermark和ProcessFunction
一.Flink中的window 1,window简述 window 是一种切割无限数据为有限块进行处理的手段.Window 是无限数据流处理的核心,Window 将一个无限的 stream 拆分成有 ...
- Flink中的Time与Window
一.Time 在Flink的流式处理中,会涉及到时间的不同概念 Event Time(事件时间):是事件创建的时间.它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间, ...
- 【翻译】Flink Table Api & SQL — Hive —— 在 scala shell 中使用 Hive 连接器
本文翻译自官网:Use Hive connector in scala shell https://ci.apache.org/projects/flink/flink-docs-release-1 ...
随机推荐
- 洛谷 P3627 [APIO2009]抢掠计划 题解
Analysis 建图+强连通分量+SPFA求最长路 但要保证最后到达的点中包含酒馆 虽然思路并不难想,但要求的代码能力很高. #include<iostream> #include< ...
- MySQL 优化--持续整理
一.innodb体系结构优化: 1.IO优化 IO能力不足时 innodb_io_capacity 应该降低 innodb_max_dirty_pages_pct 应该降低 innodb_max_di ...
- web+页面支持批量下载吗
一.此方法火狐有些版本是不支持的 window.location.href = 'https://*****.oss-cn-**.aliyuncs.com/*********';二.为了解决火狐有些版 ...
- P2313 [HNOI2005]汤姆的游戏
题目描述 汤姆是个好动的孩子,今天他突然对圆规和直尺来了兴趣.于是他开始在一张很大很大的白纸上画很多很多的矩形和圆.画着画着,一不小心将他的爆米花弄撒了,于是白纸上就多了好多好多的爆米花.汤姆发现爆米 ...
- spark错误记录总结
1.执行spark-submit时出错 执行任务如下: # ./spark-submit --class org.apache.spark.examples.SparkPi /hadoop/spark ...
- Wireshark 序
1. Foreword 前言 2. Who should read this document? 谁适合读该文档? 3. Acknowledgements 致谢 4. About this docum ...
- qt 添加本程序的注册表项
QStringcmd; cmd.clear(); QStringapplication_path=QCoreApplication::applicationFilePath();//带文件扩展名的全路 ...
- nginx配置监控
通过查看Nginx的并发连接,我们可以更清除的知道网站的负载情况.Nginx并发查看有两种方法(之所以这么说,是因为笔者只知道两种),一种是通过web界面,一种是通过命令,web查看要比命令查看显示的 ...
- Flutter移动电商实战 --(40)路由_Fluro的全局注入和使用方法
路由注册到顶层,使每个页面都可以使用,注册到顶层就需要在main.dart中 main.dart注册路由 注入 onGenerateRoute是MaterialApp自带的路由配置项, 首页跳转到详细 ...
- Nginx中文文档-安装 Nginx
nginx可以使用各平台的默认包来安装,本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好,这里默认你已经装好. ububtu平台编译环 ...