[Usaco2004]等差数列

题目大意:约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:“1,4,3,5,7”很容易看出“1,3,5,7”是等差数列。给出N(1≤N≤2000)数字AI..AN(O≤Ai≤10^9),找出最长的等差数列,输出长度.

数据范围:如题面。


题解

以为是啥神仙题,结果看见了$1\le N\le 2000$。

可以$N^2$啊.......

考虑$DP$呗,设$f_{(i, j)}$表示第$A_i$个数为等差数列第一项,$A_j$为等差数列第二项的最长等差序列。

显然,我们就需要找到$A_j$后面,离$A_j$最近的等于$2*A_j-A_i$的位置$k$,用$f_{(j, k)} +1$更新$f_{(i, j)}$即可。

这个咋找呢?

我是弄了个$map$,复杂度变成$O(N^2logN)$。

代码

#include <bits/stdc++.h>

#define N 2010 

using namespace std;

int a[N], f[N][N];

char *p1, *p2, buf[100000];

#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )

int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} map<int, int>MP; int main() {
int n = rd();
if (n == 1)
puts("1"), exit(0);
for (int i = 1; i <= n; i ++ ) {
a[i] = rd();
}
MP[a[n]] = n;
for (int i = 1; i < n; i ++ ) {
f[i][n] = 2;
}
for (int j = n - 1; j >= 2; j -- ) {
for (int i = 1; i < j ; i ++ ) {
f[i][j] = 2;
int to = a[j] + a[j] - a[i];
// int id = MP.count(to);
// printf("%d %d %d %d %d %d\n", i, j, a[i], a[j], to, id);
if (MP.count(to)) {
f[i][j] = max(f[i][j], f[j][MP[to]] + 1);
}
}
MP[a[j]] = j;
}
int ans = 0;
for (int i = 1; i <= n - 1; i ++ ) {
for (int j = i + 1; j <= n; j ++ ) {
// printf("%d %d %d\n", i, j, f[i][j]);
ans = max(ans, f[i][j]);
}
}
cout << ans << endl ;
return 0;
}

小结:做题看数据范围是很重要的,还有$map$在判断有没有值的时候要用$.count()$,不然会新建点。而且这东西是个$bool$,并不是$[]$的进化版。

[bzoj3357][Usaco2004]等差数列_动态规划_贪心的更多相关文章

  1. [bzoj4282]慎二的随机数列_动态规划_贪心

    慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...

  2. [bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心

    bzoj4368 IOI2015 boxes纪念品盒 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4368 数据范围:略. 题解: 如果在一个最 ...

  3. [bzoj1855][Scoi2010]股票交易_动态规划_单调队列

    股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...

  4. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  5. [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp

    Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...

  6. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...

  7. [luogu1156]垃圾陷阱_动态规划_背包dp

    垃圾陷阱 luogu-1156 题目大意:Holsteins在距离地面D英尺的地方,FJ间隔时间ti会往下扔第i个垃圾.Holsteins对待每一个垃圾都会选择吃掉或者垫高.Holsteins有10个 ...

  8. [bzoj1195][HNOI2006]最短母串_动态规划_状压dp

    最短母串 bzoj-1195 HNOI-2006 题目大意:给一个包含n个字符串的字符集,求一个字典序最小的字符串使得字符集中所有的串都是该串的子串. 注释:$1\le n\le 12$,$1\le ...

  9. [bzoj1708][Usaco2007 Oct]Money奶牛的硬币_动态规划_背包dp

    Money奶牛的硬币 bzoj-1708 Usaco-2007 Oct 题目大意:在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统的货币 ...

随机推荐

  1. 初入SG-UAP

    初入SG-UAP SpriderMan 关注 2019.06.19 14:10 字数 1130 阅读 10评论 0喜欢 0 初次接触SG-UAP,将自己的见解以文字形式记录下来,希望能对初入的伙伴们有 ...

  2. centos6.5linux安装docker之升级内核

    一.运行docker Linux内核版本需要在3.8以上,针对centos6.5 内核为2.6的系统需要先升级内核.不然会特别卡 在yum的ELRepo源中,有mainline(4.5).long-t ...

  3. 数据结构实验之链表三:链表的逆置(SDUT 2118)

    题目链接 #include <bits/stdc++.h> using namespace std; struct node { int data; struct node *next; ...

  4. [Linux]ubuntu更改国内源

    转自: https://blog.csdn.net/qq_35451572/article/details/79516563 推荐快速更新国内源 https://blog.csdn.net/qq_35 ...

  5. Flume-Taildir Source 监控目录下多个文件的追加

    Exec source 适用于监控一个实时追加的文件,但不能保证数据不丢失:Spooldir Source 能够保证数据不丢失,且能够实现断点续传,但延迟较高,不能实时监控:而 Taildir Sou ...

  6. 用第三方工具类,将JavaBean、List、Map<String,Object>转成JSON文本

    导入第三方jar包: >commons-beanutils-1.7.0.jar >commons-collections-3.1.jar >commons-lang-2.5.jar ...

  7. JDK1.8为什么废弃永久代【一篇就够】[z]

    https://blog.csdn.net/sjmz30071360/article/details/89456177 (Metaspace) 1.背景 2.为什么废弃永久代(PermGen) 3.深 ...

  8. 计算机组成原理 — FPGA 现场可编程门阵列

    目录 文章目录 目录 FPGA FPGA 的应用场景 FPGA 的技术难点 FPGA 的工作原理 FPGA 的体系结构 FPGA 的开发 FPGA 的使用 FPGA 的优缺点 参考文档 FPGA FP ...

  9. 关于Server2008 R2日志的查看

    Server 2008 r2通过 系统事件查看器 分析日志: 查看 系统 事件: 事件ID号: 审计目录服务访问 4934 - Active Directory 对象的属性被复制 4935 -复制失败 ...

  10. 小D课堂 - 新版本微服务springcloud+Docker教程_6-01 微服务网关介绍和使用场景

    笔记 第六章 微服务网关zuul开发实战 1.微服务网关介绍和使用场景     简介:讲解网关的作用和使用场景 (画图)          1)什么是网关         API Gateway,是系 ...