[bzoj3357][Usaco2004]等差数列_动态规划_贪心
[Usaco2004]等差数列
题目大意:约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:“1,4,3,5,7”很容易看出“1,3,5,7”是等差数列。给出N(1≤N≤2000)数字AI..AN(O≤Ai≤10^9),找出最长的等差数列,输出长度.
数据范围:如题面。
题解:
以为是啥神仙题,结果看见了$1\le N\le 2000$。
可以$N^2$啊.......
考虑$DP$呗,设$f_{(i, j)}$表示第$A_i$个数为等差数列第一项,$A_j$为等差数列第二项的最长等差序列。
显然,我们就需要找到$A_j$后面,离$A_j$最近的等于$2*A_j-A_i$的位置$k$,用$f_{(j, k)} +1$更新$f_{(i, j)}$即可。
这个咋找呢?
我是弄了个$map$,复杂度变成$O(N^2logN)$。
代码:
#include <bits/stdc++.h>
#define N 2010
using namespace std;
int a[N], f[N][N];
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
map<int, int>MP;
int main() {
int n = rd();
if (n == 1)
puts("1"), exit(0);
for (int i = 1; i <= n; i ++ ) {
a[i] = rd();
}
MP[a[n]] = n;
for (int i = 1; i < n; i ++ ) {
f[i][n] = 2;
}
for (int j = n - 1; j >= 2; j -- ) {
for (int i = 1; i < j ; i ++ ) {
f[i][j] = 2;
int to = a[j] + a[j] - a[i];
// int id = MP.count(to);
// printf("%d %d %d %d %d %d\n", i, j, a[i], a[j], to, id);
if (MP.count(to)) {
f[i][j] = max(f[i][j], f[j][MP[to]] + 1);
}
}
MP[a[j]] = j;
}
int ans = 0;
for (int i = 1; i <= n - 1; i ++ ) {
for (int j = i + 1; j <= n; j ++ ) {
// printf("%d %d %d\n", i, j, f[i][j]);
ans = max(ans, f[i][j]);
}
}
cout << ans << endl ;
return 0;
}
小结:做题看数据范围是很重要的,还有$map$在判断有没有值的时候要用$.count()$,不然会新建点。而且这东西是个$bool$,并不是$[]$的进化版。
[bzoj3357][Usaco2004]等差数列_动态规划_贪心的更多相关文章
- [bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...
- [bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心
bzoj4368 IOI2015 boxes纪念品盒 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4368 数据范围:略. 题解: 如果在一个最 ...
- [bzoj1855][Scoi2010]股票交易_动态规划_单调队列
股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp
Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...
- [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列
理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...
- [luogu1156]垃圾陷阱_动态规划_背包dp
垃圾陷阱 luogu-1156 题目大意:Holsteins在距离地面D英尺的地方,FJ间隔时间ti会往下扔第i个垃圾.Holsteins对待每一个垃圾都会选择吃掉或者垫高.Holsteins有10个 ...
- [bzoj1195][HNOI2006]最短母串_动态规划_状压dp
最短母串 bzoj-1195 HNOI-2006 题目大意:给一个包含n个字符串的字符集,求一个字典序最小的字符串使得字符集中所有的串都是该串的子串. 注释:$1\le n\le 12$,$1\le ...
- [bzoj1708][Usaco2007 Oct]Money奶牛的硬币_动态规划_背包dp
Money奶牛的硬币 bzoj-1708 Usaco-2007 Oct 题目大意:在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统的货币 ...
随机推荐
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
- From 7.29 To 8.4
From 7.29 To 8.4 大纲 英语按时背 做点思维题 可能还有时间学点东西, 这周我也不知道应该干什么 7.29 上午考试, 终于有一回不是自闭的考试了 题目比较简单, 就不说了 7.30 ...
- elasticsearch Delete (根据条件删除)
之前在 2.X版本里 这个Delete By Query功能被去掉了 因为官方认为会引发一些错误 如需使用 需要自己安装插件. bin/plugin install delete-by-query 需 ...
- 关于使用express作为spa应用服务的问题
前端工程师应该知道,spa是基于前端路由的单页面应用,如果服务端不做相应的配置,会经常出现404的问题. 一般的做法是默认返回应用的首页. express // 安装相关依赖 npm install ...
- python 找出数组重复的元素
""" 从头扫到尾,只要当前元素值与下标不同,就做一次判断,numbers[i]与numbers[numbers[i]], 相等就认为找到了重复元素,返回true,否则就 ...
- 用Python写一个将Python2代码转换成Python3代码的批处理工具
之前写过一篇如何在windows操作系统上给.py文件添加一个快速处理的右键功能的文章:<一键将Python2代码自动转化为Python3>,作用就是为了将Python2的文件升级转换成P ...
- 自动化测试 | 好用的自动化测试工具Top 10
欲善其事必先利其器,本文从软件测试人员痛点出发,介绍如何先从工具选择上取得优势,在有限的时间内完成工作.经常有人在公众号留言或是后台咨询,做自动化测试用哪个工具好,或是学哪门编程语言好呢? 这个时候总 ...
- YOLO: You Only Look Once论文阅读摘要
论文链接: https://arxiv.org/pdf/1506.02640.pdf 代码下载: https://github.com/gliese581gg/YOLO_tensorflow Abst ...
- Django之通用视图
01-介绍 通用视图把视图开发中常用的写法和模式抽象出来,让你编写少量代码就能快速实现常见的数据视图.显示对象列表就是这样一种任务. Django 自带的通用视图能实现下述功能: 1.列出对象并显示单 ...
- 消息队列 RabbitMQ 入门介绍
来源:http://ityen.com/archives/578 一.什么是RabbitMQ? RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系 ...