[bzoj3357][Usaco2004]等差数列_动态规划_贪心
[Usaco2004]等差数列
题目大意:约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:“1,4,3,5,7”很容易看出“1,3,5,7”是等差数列。给出N(1≤N≤2000)数字AI..AN(O≤Ai≤10^9),找出最长的等差数列,输出长度.
数据范围:如题面。
题解:
以为是啥神仙题,结果看见了$1\le N\le 2000$。
可以$N^2$啊.......
考虑$DP$呗,设$f_{(i, j)}$表示第$A_i$个数为等差数列第一项,$A_j$为等差数列第二项的最长等差序列。
显然,我们就需要找到$A_j$后面,离$A_j$最近的等于$2*A_j-A_i$的位置$k$,用$f_{(j, k)} +1$更新$f_{(i, j)}$即可。
这个咋找呢?
我是弄了个$map$,复杂度变成$O(N^2logN)$。
代码:
#include <bits/stdc++.h> #define N 2010 using namespace std; int a[N], f[N][N]; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} map<int, int>MP; int main() {
int n = rd();
if (n == 1)
puts("1"), exit(0);
for (int i = 1; i <= n; i ++ ) {
a[i] = rd();
}
MP[a[n]] = n;
for (int i = 1; i < n; i ++ ) {
f[i][n] = 2;
}
for (int j = n - 1; j >= 2; j -- ) {
for (int i = 1; i < j ; i ++ ) {
f[i][j] = 2;
int to = a[j] + a[j] - a[i];
// int id = MP.count(to);
// printf("%d %d %d %d %d %d\n", i, j, a[i], a[j], to, id);
if (MP.count(to)) {
f[i][j] = max(f[i][j], f[j][MP[to]] + 1);
}
}
MP[a[j]] = j;
}
int ans = 0;
for (int i = 1; i <= n - 1; i ++ ) {
for (int j = i + 1; j <= n; j ++ ) {
// printf("%d %d %d\n", i, j, f[i][j]);
ans = max(ans, f[i][j]);
}
}
cout << ans << endl ;
return 0;
}
小结:做题看数据范围是很重要的,还有$map$在判断有没有值的时候要用$.count()$,不然会新建点。而且这东西是个$bool$,并不是$[]$的进化版。
[bzoj3357][Usaco2004]等差数列_动态规划_贪心的更多相关文章
- [bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...
- [bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心
bzoj4368 IOI2015 boxes纪念品盒 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4368 数据范围:略. 题解: 如果在一个最 ...
- [bzoj1855][Scoi2010]股票交易_动态规划_单调队列
股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp
Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...
- [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列
理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...
- [luogu1156]垃圾陷阱_动态规划_背包dp
垃圾陷阱 luogu-1156 题目大意:Holsteins在距离地面D英尺的地方,FJ间隔时间ti会往下扔第i个垃圾.Holsteins对待每一个垃圾都会选择吃掉或者垫高.Holsteins有10个 ...
- [bzoj1195][HNOI2006]最短母串_动态规划_状压dp
最短母串 bzoj-1195 HNOI-2006 题目大意:给一个包含n个字符串的字符集,求一个字典序最小的字符串使得字符集中所有的串都是该串的子串. 注释:$1\le n\le 12$,$1\le ...
- [bzoj1708][Usaco2007 Oct]Money奶牛的硬币_动态规划_背包dp
Money奶牛的硬币 bzoj-1708 Usaco-2007 Oct 题目大意:在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统的货币 ...
随机推荐
- Java SE练习 - 对dom4j解析、反射的综合练习
原 Java SE练习 - 对dom4j解析.反射的综合练习 2017年12月13日 14:41:07 都说名字长不会被发现 阅读数 138 版权声明:本文为博主原创文章,遵循CC 4.0 by-sa ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- not(expr|ele|fn)从匹配元素的集合中删除与指定表达式匹配的元素
not(expr|ele|fn) 概述 从匹配元素的集合中删除与指定表达式匹配的元素 参数 exprStringV1.0 一个选择器字符串.深圳dd马达 elementDOMElementV1.0 ...
- html([val|fn])
html([val|fn]) 概述 取得第一个匹配元素的html内容.这个函数不能用于XML文档.但可以用于XHTML文档.直线电机选型 在一个 HTML 文档中, 我们可以使用 .html() 方法 ...
- Python 通过文件名批量移动文件
Python 通过文件名批量移动文件 https://stackoverflow.com/questions/28913088/moving-files-with-wildcards-in-pytho ...
- Navicat Premium 12破解版激活(全新注册机)
使用打包下载就可以了 打包下载:(注册机有5.0和5.1用哪个看心情,我用的5.1) 连接:https://pan.baidu.com/s/1ARjFa2vEYxe9sljbrZR8fQ 提取码:lx ...
- UVA 796 Critical Links —— (求割边(桥))
和求割点类似,只要把>=改成>即可.这里想解释一下的是,无向图没有重边,怎么可以使得low[v]=dfn[u]呢?只要它们之间再来一个点即可. 总感觉图论要很仔细地想啊- -一不小心就弄混 ...
- 在Windows下安装scrapy
第一步: 安装pywin32 下载地址:https://sourceforge.net/projects/pywin32/files/pywin32/,下载对应版本的pywin32,直接双击安装即可 ...
- shell编程之 ()[] {}
shell脚本中各种括号的区别以及用法 2018年08月19日 14:55:33 M_QiJunChao 阅读数:273 最近学到了shell脚本编程,觉得脚本中的不同括号有不同的用处,以及有些括 ...
- 网络流,设备、插头和转接器建图(简单map的应用)
题意: 给你n个插座,m个设备,每台设备都有对应的插座,有k个转接器. 要求:求满足不能插上插座的用电器最少个数 solution: HINT:每种适配器都有无限个,所以建图的时候要改为INF. 答案 ...