[bzoj3357][Usaco2004]等差数列_动态规划_贪心
[Usaco2004]等差数列
题目大意:约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:“1,4,3,5,7”很容易看出“1,3,5,7”是等差数列。给出N(1≤N≤2000)数字AI..AN(O≤Ai≤10^9),找出最长的等差数列,输出长度.
数据范围:如题面。
题解:
以为是啥神仙题,结果看见了$1\le N\le 2000$。
可以$N^2$啊.......
考虑$DP$呗,设$f_{(i, j)}$表示第$A_i$个数为等差数列第一项,$A_j$为等差数列第二项的最长等差序列。
显然,我们就需要找到$A_j$后面,离$A_j$最近的等于$2*A_j-A_i$的位置$k$,用$f_{(j, k)} +1$更新$f_{(i, j)}$即可。
这个咋找呢?
我是弄了个$map$,复杂度变成$O(N^2logN)$。
代码:
#include <bits/stdc++.h>
#define N 2010
using namespace std;
int a[N], f[N][N];
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
map<int, int>MP;
int main() {
int n = rd();
if (n == 1)
puts("1"), exit(0);
for (int i = 1; i <= n; i ++ ) {
a[i] = rd();
}
MP[a[n]] = n;
for (int i = 1; i < n; i ++ ) {
f[i][n] = 2;
}
for (int j = n - 1; j >= 2; j -- ) {
for (int i = 1; i < j ; i ++ ) {
f[i][j] = 2;
int to = a[j] + a[j] - a[i];
// int id = MP.count(to);
// printf("%d %d %d %d %d %d\n", i, j, a[i], a[j], to, id);
if (MP.count(to)) {
f[i][j] = max(f[i][j], f[j][MP[to]] + 1);
}
}
MP[a[j]] = j;
}
int ans = 0;
for (int i = 1; i <= n - 1; i ++ ) {
for (int j = i + 1; j <= n; j ++ ) {
// printf("%d %d %d\n", i, j, f[i][j]);
ans = max(ans, f[i][j]);
}
}
cout << ans << endl ;
return 0;
}
小结:做题看数据范围是很重要的,还有$map$在判断有没有值的时候要用$.count()$,不然会新建点。而且这东西是个$bool$,并不是$[]$的进化版。
[bzoj3357][Usaco2004]等差数列_动态规划_贪心的更多相关文章
- [bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...
- [bzoj4368][IOI2015]boxes纪念品盒_动态规划_单调队列_贪心
bzoj4368 IOI2015 boxes纪念品盒 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4368 数据范围:略. 题解: 如果在一个最 ...
- [bzoj1855][Scoi2010]股票交易_动态规划_单调队列
股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp
Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...
- [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列
理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...
- [luogu1156]垃圾陷阱_动态规划_背包dp
垃圾陷阱 luogu-1156 题目大意:Holsteins在距离地面D英尺的地方,FJ间隔时间ti会往下扔第i个垃圾.Holsteins对待每一个垃圾都会选择吃掉或者垫高.Holsteins有10个 ...
- [bzoj1195][HNOI2006]最短母串_动态规划_状压dp
最短母串 bzoj-1195 HNOI-2006 题目大意:给一个包含n个字符串的字符集,求一个字典序最小的字符串使得字符集中所有的串都是该串的子串. 注释:$1\le n\le 12$,$1\le ...
- [bzoj1708][Usaco2007 Oct]Money奶牛的硬币_动态规划_背包dp
Money奶牛的硬币 bzoj-1708 Usaco-2007 Oct 题目大意:在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统的货币 ...
随机推荐
- Appium Inspector
点击放大镜,打开如下页面: 需要填写的信息如下: 获取以上信息,需执行aapt命令,查看app信息: 进入appt.exe所在路径,执行如下命令: 得到app的详细信息: 填写完如下信息后,保存: i ...
- P2502 [HAOI2006]旅行 最小生成树
思路:枚举边集,最小生成树 提交:1次 题解:枚举最长边,添加较小边. #include<cstdio> #include<iostream> #include<algo ...
- removeClass([class|fn])
removeClass([class|fn]) 概述 从所有匹配的元素中删除全部或者指定的类.直线电机生产厂家 参数 classStringV1.0 一个或多个要删除的CSS类名,请用空格分开 f ...
- ACM之路(15)—— 字典树入门练习
刷的一套字典树的题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=120748#overview 个人喜欢指针的字典树写法,但是大力 ...
- volatile写读的内存语义
1,当写一个volatile变量时,JMM(java内存模型)会把该线程本地内存中的所有共享变量刷新到主内存中去 2,当读取一个volatile变量时,该线程会将本地内存置为无效,线程将从主内存中读取 ...
- Netfilter 之 连接跟踪的helper
注册helper nf_conntrack_ftp_init是连接跟踪ftp模块的初始化函数,可以看到其调用了nf_conntrack_helpers_register来注册helper: stati ...
- Final阶段贡献分配规则
此次作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/10063 贡献分分配规则: 组内一共五名同学,贡献分共计50分. 1.每 ...
- CDN之简介
1. 什么是 CDN? 来自 <什么是 CDN?> CDN(内容交付网络)是一种高度分布式服务器平台,为交付 Web 应用程序.流媒体等内容专门优化.服务器网络分布于众多物理和网络位置,对 ...
- python 字符串(str)和列表(list)的互相转换
1.str to list str1 = "12345"list1 = list(str1)print list1 str2 = "123 sjhid dhi" ...
- FreeMarker学习(常用指令)
参考:http://freemarker.foofun.cn/dgui_quickstart_basics.html assign: 使用该指令你可以创建一个新的变量, 或者替换一个已经存在的变量 a ...