思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- -

/*
CodeForces 840B - Leha and another game about graph [ 增量构造,树上差分 ] | Codeforces Round #429(Div 1)
题意:
选择一个边集合,满足某些点度数的奇偶性
分析:
将d = 1的点连成一颗树,不在树上的点都不连边。
可以发现,当某个节点u的所有子节点si均可操控 (u, si) 来满足自身要求
即整棵树上至多只有1个点不满足自身要求,就是根节点,此时需要在树中任意位置接入 d=-1 的一个节点 然后研究如何在这棵树上选边,考虑增量法
每次选择两个d=1的点加入树中,并将这棵树上两点间路径上所有的边选择状态反转
易证对于新加入的节点满足要求,而路径上原有节点仍满足要求
最后若只剩一个d=1的节点,则和一个d=-1的节点组成一对
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5+5;
struct Edge {
int v, i;
};
vector<Edge> edge[N];
vector<int> c1, c2;
int n, m;
int d[N];
bool vis[N], flag[N];
vector<int> ans;
void dfs(int u)
{
vis[u] = 1;
for (auto& e : edge[u])
{
if (vis[e.v]) continue;
dfs(e.v);
if (flag[e.v]) ans.push_back(e.i);
flag[u] ^= flag[e.v];
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d", &d[i]);
if (d[i] == 1) c1.push_back(i);
else if (d[i] == -1) c2.push_back(i);
}
for (int i = 1; i <= m; i++)
{
int u, v; scanf("%d%d", &u, &v);
edge[u].push_back(Edge{v, i});
edge[v].push_back(Edge{u, i});
}
if (c1.size()%2 && c2.empty())
{
puts("-1"); return 0;
}
int k = c1.size()/2;
for (int i = 0; i < k; i++)
{
flag[c1[i]] = flag[c1[k+i]] = 1;
}
if (c1.size() % 2)
{
flag[c1[c1.size()-1]] = flag[c2[0]] = 1;
}
dfs(1);
printf("%d\n", ans.size());
for (auto& x : ans) printf("%d ", x);
puts("");
}

  

CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)的更多相关文章

  1. CodeForces 840A - Leha and Function | Codeforces Round #429 (Div. 1)

    /* CodeForces 840A - Leha and Function [ 贪心 ] | Codeforces Round #429 (Div. 1) A越大,B越小,越好 */ #includ ...

  2. CodeForces 840C - On the Bench | Codeforces Round #429 (Div. 1)

    思路来自FXXL中的某个链接 /* CodeForces 840C - On the Bench [ DP ] | Codeforces Round #429 (Div. 1) 题意: 给出一个数组, ...

  3. Codeforces Round #429 (Div. 2/Div. 1) [ A/_. Generous Kefa ] [ B/_. Godsend ] [ C/A. Leha and Function ] [ D/B. Leha and another game about graph ] [ E/C. On the Bench ] [ _/D. Destiny ]

    PROBLEM A/_ - Generous Kefa 题 OvO http://codeforces.com/contest/841/problem/A cf 841a 解 只要不存在某个字母,它的 ...

  4. Codeforces Round #429 (Div. 2) - D Leha and another game about graph

    Leha and another game about graph 题目大意:给你一个图,每个节点都有一个v( -1 , 0 ,1)值,要求你选一些边,使v值为1 的点度数为奇数,v值为0的度数为偶数 ...

  5. Codeforces Round #429 (Div. 2) 补题

    A. Generous Kefa 题意:n个气球分给k个人,问每个人能否拿到的气球都不一样 解法:显然当某种气球的个数大于K的话,就GG了. #include <bits/stdc++.h> ...

  6. Leha and another game about graph CodeForces - 840B (dfs)

    链接 大意: 给定无向连通图, 每个点有权值$d_i$($-1\leq d_i \leq 1$), 求选择一个边的集合, 使得删除边集外的所有边后, $d_i$不为-1的点的度数模2等于权值 首先要注 ...

  7. Codeforces 841D Leha and another game about graph - 差分

    Leha plays a computer game, where is on each level is given a connected graph with n vertices and m  ...

  8. 【推导】【DFS】Codeforces Round #429 (Div. 1) B. Leha and another game about graph

    题意:给你一张图,给你每个点的权值,要么是-1,要么是1,要么是0.如果是-1就不用管,否则就要删除图中的某些边,使得该点的度数 mod 2等于该点的权值.让你输出一个留边的方案. 首先如果图内有-1 ...

  9. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

随机推荐

  1. 【洛谷】P3980 [NOI2008]志愿者招募

    [洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...

  2. CentOs7环境下手动配置JDK7

    下载: JDK7下载地址:http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7- ...

  3. 【C++札记】命名空间(namespace)

    介绍 命名空间可以解决程序中的同名冲突,尤其大型项目多人开发中经常用到.比如我们使用C++的标准输出std::cout就使用了std命名空间. 使用作用域符:: #include <iostre ...

  4. go slice切片注意跟数组的区别

    一个 slice 会指向一个序列的值,并且包含了长度信息. []T 是一个元素类型为 T 的 slice. [2]string 这样定义久是字符数组 []string 这样定义就是切片 表面上看切片就 ...

  5. QCache<key,T> 就定义了一个缓存,其类似于map,好处是QCache自动获得被插入对象的所有权,控制所有对象的costs总和(自动管理对象的生存时间。正经数据是不会用到它的,辅助控制才有可能用到它)

    在软件开发中,我们经常需要在内存中存储一些临时数据用于后续相关计算.我们一般把这些数据存储到某个数组里,或者STL中的某个合适的容器中.其实,在Qt中直接为我们提供了一个QCache类专用于这种需求. ...

  6. Tomcat安装及其目录结构介绍

    Tomcat服务器是一个免费的开放源代码的Web应用服务器,属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选. Tomcat的安装版本有绿色解压 ...

  7. (八)装配Bean(2)

    二.在Java类中进行显式的装配 显式配置有两种: 1. 一种是在java(本文讲解)   2. 另一种是xml配置文件(第一章有讲) 案例一: 使用java显式装配+@autowired自动装配的方 ...

  8. 笔记: ASP.NET Core视图组件

    视图组件 asp.net core mvc 提供了部分视图的新替代品:视图组件. 视图组件与分布视图的主要区别在于视图组件与控制器不相关.可使用在独立于单个控制器的场景,如:菜单导航.侧边栏.分页栏等 ...

  9. GraphQL实战篇(一)

    看过基础篇的都知道,GraphQL创建Schema有两种方式,Schema First和Graph Type,前者使用GraphQL Schema Language类似于EF的DB First:后者和 ...

  10. js中this关键字用法详解

    1.全局环境中的this 在全局环境中,this 指向全局对象Global,即 window 对象 如: alert(this); // 显示 [object Window] alert(this = ...