题意 : 给你两个只包含 0 和 1 的字符串 a, b,定义函数 f ( A, B ) 为 字符串A和字符串B 比较

存在多少个位置 i 使得 A[ i ] != B[ i ] ,例如

  • f(00110,01100)=2
  • f(00110,11000)=4
  • f(00110,10001)=4
  • f(00110,00010)=1

问你 取出 a 中 所有 长度 为 lenb (字符串b的长度) 的子串 c, 求 f ( c, b) 为偶数的 c 的个数。

解 : 显然, a 中 存在  lena - lenb + 1 个 c, 直接枚举显然是爆的, 字符串只包含 0 1 且 题目只问 f ( b, c ) 的奇偶性。

想到异或,若 在位置 i 上 b[ i ] != c[ i ], 则 b[ i ] ^ c[ i ]  = 1; 否则  b[ i ] ^ c[ i ]  = 0;

所以可以 用 一个 ans 来记录  f ( b, c) 的奇偶性, 那么只要枚举 b字符串的长度,然后 ans = ans ^ b[ i ] ^ c[ i ] 就行了

最后判断一下 ans 的奇偶性看满不满足就行了。

这题的关键是 a  的 长度为 lenb 的子串 c 有很多, 你不可能对于每个 c 都去遍历一遍 b字符串。

首先,枚举a 的所有长度为 lenb 的子串 c  枚举 i , 字符串 c 就是 a[ i ] ~ a[ i + lenb - 1];

首先,先取第一个 c ;  a[ 0 ] ~ a[ lenb - 1] 与 b 进行比较 求出 ans0;

然后 对于 第二个 c : a[ 1 ] ~ a[ lenb ] 的 ans1   就会等于 ans0 ^ a[ 0 ] ^ a[ lenb ];

同理 对于 第 i 个 c:  a[ i ] ~ a[ i + lenb - 1 ] 的 ans( i ) = ans( i - 1 ) ^ a[ i - 1 ] ^ a[ i + lenb - 1]

为什么可以这样写呢; 那就是 因为异或的性质啦。  异或 a [ i - 1 ] 是消除 a[ i - 1 ] 的影响

异或 a [ i + lenb - 1] 是加入计算;

举个例: 现在令  a = 01100010  ;  b = 00110;

第一个 c 的 ans 是

( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )

第二个 c 的 ans

( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )^ 0 ^ 0   // 第一个0 是a[ i - 1 ],第二个0是a[ i + lenb - 1 ];

=  0 ^ ( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )^ 0  // 异或两次相当于没有异或

= ( 0 ^ 1)^( 0 ^ 1 )^( 1 ^ 0 )^( 1 ^ 0 )^( 0 ^ 0 )

用到了 异或 运算  的 交换律 和  异或两次等于没异或的性质。   挺巧妙的这个思维。

代码里 的 i 和我说的 i 不一样,不过道理都是一样的啦;

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
#define Pi acos(-1.0)
using namespace std;
const int N = ;
int main() {
string a, b;
cin >> a >> b;
int ans = , coun = ;
int lena = a.size(); int lenb = b.size();
rep(i, , lenb - ) ans = ans ^ ( a[i] - '') ^ (b[i] - '');
if(ans % == ) coun++;
rep(i, lenb, lena - ) {
ans = ans ^ (a[i - lenb] - '') ^ (a[i] - '');
if(ans % == ) coun++;
}
cout << coun << endl;
return ;
}

C Vus the Cossack and Strings ( 异或 思维)的更多相关文章

  1. CodeForces - 1186 C. Vus the Cossack and Strings (异或)

    Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...

  2. Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)

    C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...

  3. codeforces 1186C Vus the Cossack and Strings

    题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...

  4. Codeforces F. Vus the Cossack and Numbers(贪心)

    题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...

  5. E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)

    E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...

  6. Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers

    Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...

  7. 题解【Codeforces1186A】 Vus the Cossack and a Contest

    这题是入门难度的题目吧-- 根据题意可以得出,只有当\(m\)和\(k\)都大于等于\(n\)时,\(Vus\)才可以实现他的计划. 因此,我们不难得出以下\(AC\)代码: #include < ...

  8. 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)

    Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...

  9. Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路

    题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2).(deg[i]是 ...

随机推荐

  1. X86逆向9:通过关键常量破解

    本章将讲解一下关于关键全局变量的一些内容,关键的全局变量对于软件的破解非常的有用,找到了关键全局变量并改写它同样可以完成完美爆破一个程序,这里我将使用CM小例子来讲解搜索关键变量的一些技巧,最后我们来 ...

  2. [多平台]pymo – 手机上的 GalGame 引擎

    [多平台]pymo – 手机上的 GalGame 引擎 介绍下这个能在手机上玩移植 GalGame 的游戏引擎,不知道有多少人听过呢?相信如果有喜欢在手机上玩 GalGame 的同学肯定听过类似的东西 ...

  3. python 小数精度控制

    可以用:round(数值,保留小数位数) 详情参考 https://www.cnblogs.com/herbert/p/3402245.html

  4. css;js学习(一)

    推荐基础前端学习地址https://ke.qq.com/course/315961蝉壳学院 清除浮动 .clearfix:before,.clearfix:after{ content: " ...

  5. 数组通常在JS中使用

    数组通常在JS中使用,例如具有相同名称的多个输入.如果它们是动态生成的,则需要在提交时确定它们是否是数组.如果(文件).MyList.长度!=“未定义”)此用法不正确.正确的是如果(文件.MyList ...

  6. C# 知识点笔记:IEnumerable<>的使用,利用反射动态调用方法

    IEnumerable<T>的使用 创建一个IEnumerable对象 List<string> fruits = new List<string> { " ...

  7. Nginx访问限制配置

    Nginx访问限制配置 nginx访问限制可以基于两个方面,一个是基于ip的访问控制,另一个是基于用户的信任登陆控制 下面我们将对这两种方法逐个介绍 基于IP的访问控制 介绍: 可以通过配置基于ip的 ...

  8. Flink 1.0到1.9特性

    Flink API 历史变迁 在 Flink 1.0.0 时期,加入了 State API,即 ValueState.ReducingState.ListState 等等.State API 可以认为 ...

  9. windows 下Nginx 入门

    验证配置是否正确: nginx -t 查看Nginx的版本号:nginx -V 启动Nginx:start nginx 快速停止或关闭Nginx:nginx -s stop 正常停止或关闭Nginx: ...

  10. SpringMVC----视图层框架

    Spring Web模型-视图-控制器(MVC)框架是围绕DispatcherServlet设计的,DispatcherServlet将接收的请求分派给应用程序.SpringMVC具有配置处理程序映射 ...