题意:

一棵树,询问一个子树内出现次数$≥k$的颜色有几种


强制在线见上一道

用莫队不知道比分块高到哪里去了,超好写不用调7倍速度!!!

可以用分块维护出现次数这个权值,实现$O(1)-O(\sqrt{N})$修改查询

[update 2017-03-22]还可以用dsu on tree做,并不想再写了...

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e5+, M=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,Q,a[N],u,k; struct edge{int v,ne;}e[N<<];
int cnt,h[N];
inline void ins(int u,int v){
e[++cnt]=(edge){v,h[u]}; h[u]=cnt;
e[++cnt]=(edge){u,h[v]}; h[v]=cnt;
}
int dfc,L[N],R[N];
int t[N];
void dfs(int u,int fa){
L[u]=++dfc; a[dfc]=t[u];
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa) dfs(e[i].v, u);
R[u]=dfc;
} int block,m,pos[N];
struct _blo{int l,r;} b[M];
void ini(){
block=sqrt(n);
m=(n-)/block+;
for(int i=;i<=n;i++) pos[i]=(i-)/block+;
for(int i=;i<=m;i++) b[i].l=(i-)*block+, b[i].r=i*block;
b[m].r=n;
}
struct Block{
int sum[M],a[N];
void add(int x,int v) {sum[pos[x]]+=v; a[x]+=v;}
int suf(int x){
if(x>n) return ;
int p=pos[x], ans=;
if(p==m) for(int i=x;i<=n;i++) ans+=a[i];
else{
for(int i=x; i<=b[p].r; i++) ans+=a[i];
for(int i=p+; i<=m; i++) ans+=sum[i];
}
return ans;
}
}B; struct meow{
int l,r,k,id;
bool operator <(const meow &x) const {return pos[l]<pos[x.l] || (pos[l]==pos[x.l] && r<x.r);}
}q[N];
int c[N], ans[N];
inline void add(int x) {B.add(c[x], -); c[x]++; B.add(c[x], );}
inline void del(int x) {B.add(c[x], -); c[x]--; B.add(c[x], );}
void modui(){
int l=,r=;
for(int i=;i<=Q;i++){
while(r<q[i].r) r++, add(a[r]);
while(r>q[i].r) del(a[r]), r--;
while(l<q[i].l) del(a[l]), l++;
while(l>q[i].l) l--, add(a[l]);
ans[ q[i].id ]=B.suf( q[i].k );
}
}
int main(){
// freopen("in","r",stdin);
n=read(); Q=read(); ini();
for(int i=;i<=n;i++) a[i]=t[i]=read();
for(int i=;i<n;i++) ins(read(), read());
dfs(,);
for(int i=;i<=Q;i++) u=read(), k=read(), q[i]=(meow){L[u], R[u], k, i};
sort(q+, q++Q);
modui();
for(int i=;i<=Q;i++) printf("%d\n",ans[i]);
}

CF 375D. Tree and Queries【莫队 | dsu on tree】的更多相关文章

  1. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  2. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  3. [Codeforces375D]Tree and Queries(莫队算法)

    题意:给定一棵树,每个节点有颜色,对于每个询问(u,k)询问以u为根节点的子树下有多少种颜色出现次数>=k 因为是子树,跟dfs序有关,转化为一段区间,可以用莫队算法求解 直接用一个数组统计出现 ...

  4. Sona && Little Elephant and Array && Little Elephant and Array && D-query && Powerful array && Fast Queries (莫队)

    vjudge上莫队专题 真的是要吐槽自己(自己的莫队手残写了2个bug) s=sqrt(n) 是元素的个数而不是询问的个数(之所以是sqrt(n)使得左端点每个块左端点的范围嘴都是sqrt(n)) 在 ...

  5. XOR Queries(莫队+trie)

    题目链接: XOR Queries 给出一个长度为nn的数组CC,回答mm个形式为(L, R, A, B)(L,R,A,B)的询问,含义为存在多少个不同的数组下标k \in [L, R]k∈[L,R] ...

  6. spoj COT2 - Count on a tree II 树上莫队

    题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的,  受益匪浅.. #include <iostream> #include < ...

  7. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

  8. SP10707 COT2 - Count on a tree II (树上莫队)

    大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...

  9. SPOJ COT2 Count on a tree II 树上莫队算法

    题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...

随机推荐

  1. Codeforces Round #328 (Div. 2)_B. The Monster and the Squirrel

    B. The Monster and the Squirrel time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. vim与外部文件的粘帖复制

    vim与外部文件的粘帖复制 ubuntu默认vim是不支持从外部文件与vim之间的粘帖复制,vim有自己的剪切版,分别是”0-”9,”-,”8,”+,”:,”/,”%,”i,这些都是vim的寄存器,可 ...

  3. ucosii --任务就绪表

    任务就绪表的任务就是高效的找出当前优先级最高的就绪任务. 由任务就绪表OSRdyTbl和任务就绪组OSRdyGrb组成,OSRdyTbl每一个位都记录着一个任务的就绪状态, 0非就绪1就绪,OSRdy ...

  4. java常量池詳解

    一.相关概念 什么是常量用final修饰的成员变量表示常量,值一旦给定就无法改变!final修饰的变量有三种:静态变量.实例变量和局部变量,分别表示三种类型的常量. Class文件中的常量池在Clas ...

  5. VUE之ECMAScript6(es6)

    es6:es:EMCAScript 6 (es2015)Emca:国际标准组织 1.常量和变量 const a = "hello" let:定义一个块级作用域的变量 需要先定义再使 ...

  6. Django框架之正则表达式URL误区

    问题:我学习的视频大概是2015年录的,里面用的Django版本比较老关于正则表达式URL这一块都是用的url("url(r'^admin/', admin.site.urls)," ...

  7. (Release Candidate)Candidate

    RC:(Release Candidate)Candidate是候选人的意思,用在软件或者操作系统上就是候选版本

  8. SQL Constraints

    每个表可以有多个 UNIQUE 约束,但是每个表只能有一个 PRIMARY KEY 约束. http://www.w3school.com.cn/sql/sql_unique.asp 另外相关:@On ...

  9. Ubuntu问题:E45: 'readonly' option is set (add ! to override)错误解决

    问题描述:E45: 'readonly' option is set (add ! to override) 问题分析:该错误为当前用户没有权限对文件作修改 问题解决: 输入 :w !sudo tee ...

  10. linux_磁盘体系

    未曾习艺先学礼,未曾学武先习德 当今磁盘都是温室磁盘,原理是一样的,高速转动的的盘,磁头做径向运动 当今磁盘的发展趋势: 体积更小.速度更快.容量更大.使用更安全 速度更快: 主轴转速: 10000/ ...