【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
Solution
这道题就是树的计数加强版,多了不要求的情况。
对于已限制的情况,就是C(n-2,t)*可重复元素的公式,考虑其他不限制的元素,再*(n-t)^(n-2-sum),t为已限制点个数,sum为已限制度数。
大概就是这个意思,计算要用分解质因数+高精度,具体细节自己推一推。
Code
因为是高精乘低精,高精度很好打。
1A十分感动,感觉最近打代码没以前那么无脑了。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=5e3+; int dy[maxn],pri[maxn],tot[maxn],cnt;
int a[maxn],d[maxn],n,t,len; int getpri(){
for(int i=;i<=n;i++){
if(!dy[i]) pri[++cnt]=i,dy[i]=cnt;
for(int j=;j<=cnt&&pri[j]*i<=n;j++){
dy[pri[j]*i]=j;
if(i%pri[j]==) break;
}
}
} int add(int x,int k){
while(x!=){
tot[dy[x]]+=k;
x/=pri[dy[x]];
}
} int mul(int x){
for(int i=;i<=len;i++) a[i]*=x;
for(int i=;i<=len;i++) if(a[i]>=){
if(i==len) len++;
a[i+]+=a[i]/;
a[i]%=;
}
} int main(){
int sum=;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&d[i]);
if(d[i]!=-) sum+=d[i]-;
}
if(sum>n-){
printf("0\n");
return ;
}
if(n==){
printf("1\n");
return ;
} for(int i=;i<=n;i++){
if(!d[i]){
printf("0\n");
return ;
}
if(d[i]!=-) t++;
} getpri();
for(int i=;i<=n-;i++) add(i,);
for(int i=;i<=n--sum;i++) add(n-t,);
for(int i=;i<=n--sum;i++) add(i,-);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++) add(j,-); len=a[]=;
for(int i=;i<=cnt;i++)
for(int j=;j<=tot[i];j++) mul(pri[i]); for(int i=len;i>=;i--)
printf("%d",a[i]);
return ;
}
【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼的更多相关文章
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...
- [bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
随机推荐
- python之多继承与__mro__的使用
1 class Base(object): def text(self): print('------text-----') class A(Base): def text(self): print( ...
- Struts2,Spring,Hibernate优缺点
struts框架具有组件的模块化,灵活性和重用性的优点,同时简化了基于MVC的web应用程序的开发. 优点: Struts跟Tomcat.Turbine等诸多Apache项目一样,是开源软件,这是它的 ...
- jquery 设置占位符
<script type="text/javascript"> $(document).ready(function(){ $('.inputfiel ...
- access treeview读取数据表成树并与子窗体联动
Private Sub Form_Load()Dim i As IntegerDim rst As DAO.RecordsetSet rst = CurrentDb.OpenRecordset(&qu ...
- redis+twemproxy实现redis集群
Redis+TwemProxy(nutcracker)集群方案部署记录 转自: http://www.cnblogs.com/kevingrace/p/5685401.html Twemproxy 又 ...
- Day6_内置函数
定义完一个有名函数,可以直接利用函数名+括号来执行,例如:func() 有名函数: def func(x,y,z=1): return x+y+z 匿名函数: lambda x,y,z=1:x+y+z ...
- 基于JS的WEB会议室预订拖拽式图形界面的实现
06年的一篇blog,转到这个博客上: 很早之前写的,后来由于这个功能模块取消,最终没有上线,所以与Server交互的那部分还没有写,不过那部分方案我也已经出来了,而且现在客户端这一部分已经通过了比较 ...
- Mac下面解决PYTHONPATH配置的方法
问题起因:MacPort安装的Python包在/opt目录里面,和系统安装的python包不在一起,由于Mac下面编译安装无止境的找不到问题,虽然MacPort解决了这个问题,但是它安装的东西,得自己 ...
- java线程之线程通信控制
在上篇我们看到,A线程往公共资源库(对象)提供了一条数据,然后B线程从库中提取了数据并打印出来. 实际项目中,我们不可能只往库中提供一条数据,而且库的大小也不会是无穷大的,那么我们就会有这样一 个需求 ...
- jQuery匿名函数$(function(){ }
搬运原地址:https://zhidao.baidu.com/question/473318430.html $(function(){ }实际上是匿名函数.这是JQuery的语法,$表示JQuery ...