本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/43404205


A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

思路:

(1)题意为给定m行n列,求从第0行第0列走到第m行第n列的路径有多少条。

(2)对于本题,首先想到的是通过递归来实现,当行数为1或者列数为1时,路径只有一条;我们先从行开始,假设从第1行第1列元素开始,向右到达右下角,则可以看做是去除第一列后剩余行列对应路径,以函数f(m,n)表示路径条数,则有f(m,n)=f(1,n-1)+f(2,n-1),...,+f(n,n-1),而f(1,n)=f(m,1)=1,则通过递归即可得到答案,只是递归效率太低,Oj肯定会超时,所以,不能选用这种方法。

(3)考虑到m行n列正好对应一个二位数组,而我们发现f(1,n)=f(m,1)=1,所以,我们对整个二维数组进行拆分,假设拆分第一行,则第一行中任意位置作为终点对应的条数都为1,同理拆分第一列也是;这样,对应二维数组的第一行第一列的值就都为1了;假设数组为2*2,则我们发现到达右下角的路径数为f(2,2)=2=f(2,1)+f(1,2),正好为该位置对应上方和左方值之和;同理,当数组为3*3时,f(3,3)=6=f(3,2)+f(2,3)={f(3,1)+f(2,2)}+{f(1,3)+f{2,2}}={1+f(1,1)+f(1,1)}+{1+f(1,1)+f(1,1)}=6;同理,当数组为m*n时,f(m,n) = f(m-1,n)+f(m,n-1)=.......。所以,我们只需要对二维数组中每个位置遍历赋值即可得到最后的结果,详情见下方代码。

(4)希望本文对你有所帮助。

算法代码实现如下:

	/**
	 * @liqq 递归算法能够实现 但是会超时 oj不通过
	 */
	public static int get(int row, int col){
		if(row<=0 || col <=0) return 0;
		if(row==1) return 1;
		if(col==1) return 1;
		int result = 0;
		for (int i = 1; i <=row; i++) {
			result+=get(i,col-1);
		}
		return result;
	}
	/**
	 * @author 二维数组实现
	 */
	public static int getResult(int m, int n){
		int[][] arr   = new int[m][n];

		for (int i = 0; i < m; i++) {
			arr[i][0]=1;
		}

		for (int i = 0; i < n; i++) {
			arr[0][i]=1;
		}

		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				arr[i][j]=arr[i-1][j]+arr[i][j-1];
			}
		}

		return arr[m-1][n-1];
	}

Leetcode_62_Unique Paths的更多相关文章

  1. [LeetCode] Binary Tree Paths 二叉树路径

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  2. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  3. [LeetCode] Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  4. leetcode : Binary Tree Paths

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  5. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  6. LeetCode-62-Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  9. soj 1015 Jill's Tour Paths 解题报告

    题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...

随机推荐

  1. Gradle 1.12用户指南翻译——第四十五章. 应用程序插件

    本文由CSDN博客貌似掉线翻译,其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Githu ...

  2. Activtiy完全解析(一、Activity的创建过程)

    转载请标明出处: http://blog.csdn.net/xmxkf/article/details/52452218 本文出自:[openXu的博客]   在Android开发过程中,我们几乎每天 ...

  3. HDFS基本原理及数据存取实战

    ---------------------------------------------------------------------------------------------------- ...

  4. 详解EBS接口开发之应收INVOICE导入

    (一)应收INVOICE常用标准表简介 1.1   常用标准表 如下表中列出了与应收INVOICE导入相关的表和说明: 表名 说明 其他信息 RA_BATCH_SOURCES_ALL AR事务处理来源 ...

  5. AMH 5.X下安装 Flarum

    如果移动端访问不佳,请尝试–>Github版 背景 最近无意间发现几个开源软件的Bug反馈系统使用的是Flarum,Flarum是一款优雅简洁论坛软件,看起来还是相当不错的,一时抑制不住想要尝试 ...

  6. 指令汇B新闻客户端开发(四) 自动轮播条

    在这个新闻客户端,我们可以看到有一个轮播页面,在这个项目中,用Handler和一个定时器来做更容易一些, 我们定义一个Handler: private Handler mHandler; 定时器的代码 ...

  7. [ExtJS5学习笔记]第十九节 Extjs5中通过设置form.Panel的FieldSet集合属性控制多个field集合

    本文地址:http://blog.csdn.net/sushengmiyan/article/details/39209533 官方例子:http://docs.sencha.com/extjs/5. ...

  8. 深入解剖unsigned int 和 int

    就如同int a:一样,int 也能被其它的修饰符修饰.除void类型外,基本数据类型之前都可以加各种类型修饰符,类型修饰符有如下四种: 1.signed----有符号,可修饰char.int.Int ...

  9. Linux系统编程----孤儿进程

    什么是孤儿进程? 孤儿进程,  指在父进程退出后,而子进程还在运行,这个子进程就成了孤儿进程,这时由init进程(pid=1)接管 来看看例子: #include <stdio.h> #i ...

  10. 【Unity Shaders】Mobile Shader Adjustment—— 什么是高效的Shader

    本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...